// Numbas version: finer_feedback_settings {"name": "Aiping's copy of Geometry. Right-angled triangle II. Version 6", "extensions": [], "custom_part_types": [], "resources": [["question-resources/triangle_6nKlln9.png", "/srv/numbas/media/question-resources/triangle_6nKlln9.png"], ["question-resources/triangle_2.png", "/srv/numbas/media/question-resources/triangle_2.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"preamble": {"js": "", "css": ""}, "ungrouped_variables": ["c", "a", "x", "y", "b"], "advice": "
This is a calculator question. You will need to use Pythagorus Theorem and SOH CAH TOA. Google these if you need a recap.
\nFinding unknown sides/angles in right-angled triangles.
\nVersion 1: b,c known
\nVersion 2: a,x known
\nVersion 3: a,y known
\nVersion 4: b,x known
\nVersion 5: b,a known
\nVersion 6: c,a known
"}, "rulesets": {}, "variablesTest": {"maxRuns": 100, "condition": ""}, "name": "Aiping's copy of Geometry. Right-angled triangle II. Version 6", "extensions": [], "type": "question", "parts": [{"extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "$a=\\var{a}$ and $c = \\var{c}$. Calculate the other quantities.
\n$x = $ [[0]]
\n$y =$ [[1]]
\n$b = $ [[2]]
\n\nGive your angles in degrees and give all answers to 3 s.f.
", "scripts": {}, "gaps": [{"correctAnswerFraction": false, "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "mustBeReducedPC": 0, "correctAnswerStyle": "plain", "type": "numberentry", "allowFractions": false, "scripts": {}, "maxValue": "{x}", "unitTests": [], "minValue": "{x}", "marks": 1, "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "showFeedbackIcon": true}, {"correctAnswerFraction": false, "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "mustBeReducedPC": 0, "correctAnswerStyle": "plain", "type": "numberentry", "allowFractions": false, "scripts": {}, "maxValue": "{y}", "unitTests": [], "minValue": "{y}", "marks": 1, "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "showFeedbackIcon": true}, {"correctAnswerFraction": false, "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "mustBeReducedPC": 0, "correctAnswerStyle": "plain", "type": "numberentry", "allowFractions": false, "scripts": {}, "maxValue": "{b}", "unitTests": [], "minValue": "{b}", "marks": 1, "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "showFeedbackIcon": true}], "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "sortAnswers": false, "type": "gapfill", "customMarkingAlgorithm": "", "variableReplacements": [], "marks": 0, "showFeedbackIcon": true}], "functions": {}, "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}, {"name": "Aiping Xu", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3506/"}]}]}], "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}, {"name": "Aiping Xu", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3506/"}]}