// Numbas version: exam_results_page_options {"name": "John's copy of John's copy of John's copy of John's copy of John's copy of John's copy of John's copy of John's copy of John's copy of John's copy of John's Using Surds, Rationalising the Denominator", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "preamble": {"js": "", "css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n"}, "ungrouped_variables": ["p", "d", "n", "m", "b", "a", "v", "t", "c", "s"], "functions": {}, "extensions": [], "variablesTest": {"condition": "n^2 > a", "maxRuns": 100}, "metadata": {"description": "

Manipulate surds and rationalise the denominator of a fraction when it is a surd.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

To include a square root sign in your answer use sqrt(). For example, to write $\\sqrt{3}$, type sqrt(3) into the answer box. If you are entering a number multiplied by the square root of some other number, for example $3\\sqrt{5}$, type 3*sqrt(5) into the answer box.

", "variables": {"b": {"templateType": "anything", "description": "

parts d and e

", "definition": "random(2..5 #1 except v except sqrt(m^2*d) except 3)", "group": "Ungrouped variables", "name": "b"}, "a": {"templateType": "anything", "description": "

shorter list of primes for parts a,c,e,f and g

", "definition": "random(2..19 #1 except 4 except 6 except 8 except 9 except 10 except 12 except 14 except 15 except 16 except 18 except v) ", "group": "Ungrouped variables", "name": "a"}, "d": {"templateType": "anything", "description": "

Parts a, d,e and h

", "definition": "random(2..7 except 4)", "group": "Ungrouped variables", "name": "d"}, "n": {"templateType": "anything", "description": "

all numbers from 3-10 for parts a, b, e, g

", "definition": "random(3..10 #1)", "group": "Ungrouped variables", "name": "n"}, "t": {"templateType": "anything", "description": "", "definition": "random(2,3)", "group": "Ungrouped variables", "name": "t"}, "m": {"templateType": "anything", "description": "

parts b and d

", "definition": "random(2..5 #1 except n^2)", "group": "Ungrouped variables", "name": "m"}, "p": {"templateType": "anything", "description": "

prime number for parts a,b and h

", "definition": "random(1..20 #2 except 1 except 9 except 15 except a)", "group": "Ungrouped variables", "name": "p"}, "v": {"templateType": "anything", "description": "

Parts c and e

", "definition": "random(2,3,5)", "group": "Ungrouped variables", "name": "v"}, "s": {"templateType": "anything", "description": "

Short list of primes for part d.

", "definition": "random(2..7 except 4 except 6)", "group": "Ungrouped variables", "name": "s"}, "c": {"templateType": "anything", "description": "

Fraction in answer for part d.

", "definition": "(m)/(b)", "group": "Ungrouped variables", "name": "c"}}, "tags": [], "parts": [{"customName": "", "customMarkingAlgorithm": "", "choices": ["

Can be simplified further

", "

Cannot be simplified further

"], "maxMarks": "3", "showCellAnswerState": true, "shuffleAnswers": true, "matrix": [[0, "1", 0], ["1", 0, "1"]], "displayType": "checkbox", "showCorrectAnswer": true, "minAnswers": "3", "showFeedbackIcon": true, "layout": {"expression": "", "type": "all"}, "minMarks": 0, "scripts": {}, "answers": ["

$\\sqrt{\\var{p}}$

", "

$\\sqrt{\\simplify{{a}*{n}^2}}$

", "

$\\sqrt{\\var{a}}$

"], "prompt": "

Which of the following can be simplified further?

", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "type": "m_n_x", "shuffleChoices": false, "marks": 0, "maxAnswers": "3", "unitTests": [], "useCustomName": false, "warningType": "warn", "variableReplacements": []}, {"customName": "", "customMarkingAlgorithm": "", "sortAnswers": false, "scripts": {}, "prompt": "

Simplify $\\sqrt{\\simplify{{n}^2*{p}}}$.

\n

$\\sqrt{\\simplify{{n}^2*{p}}} =$ [[0]]$\\sqrt{\\var{p}}$.

", "stepsPenalty": "1", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "steps": [{"customName": "", "customMarkingAlgorithm": "", "scripts": {}, "prompt": "

Recall the  first rule of surds

\n

$\\sqrt{(ab)} = \\sqrt{a} \\times \\sqrt{b}$.

\n

\n

", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "information", "showFeedbackIcon": true, "marks": 0, "unitTests": [], "useCustomName": false, "variableReplacements": []}], "showFeedbackIcon": true, "marks": 0, "unitTests": [], "useCustomName": false, "gaps": [{"customName": "", "customMarkingAlgorithm": "", "failureRate": 1, "checkingType": "absdiff", "showCorrectAnswer": true, "checkVariableNames": false, "vsetRange": [0, 1], "showFeedbackIcon": true, "mustmatchpattern": {"pattern": "$n", "nameToCompare": "", "partialCredit": 0, "message": "You haven't fully simplified."}, "vsetRangePoints": 5, "checkingAccuracy": 0.001, "scripts": {}, "answer": "{n}", "valuegenerators": [], "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "type": "jme", "answerSimplification": "all", "marks": "2", "unitTests": [], "showPreview": true, "useCustomName": false, "variableReplacements": []}], "variableReplacements": []}, {"customName": "", "customMarkingAlgorithm": "", "sortAnswers": false, "scripts": {}, "prompt": "

Simplify $\\displaystyle\\frac{\\sqrt{\\simplify{{a}*{v}}}}{\\sqrt{\\var{a}}}$.

\n

$\\displaystyle\\frac{\\sqrt{\\simplify{{a}*{v}}}}{\\sqrt{\\var{a}}} =$ [[0]].

\n

", "stepsPenalty": "1", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "steps": [{"customName": "", "customMarkingAlgorithm": "", "scripts": {}, "prompt": "

You could use either of the following rules:

\n

$\\sqrt{(ab)} = \\sqrt{a} \\times \\sqrt{b}$.

\n

$\\displaystyle\\sqrt{\\frac{a}{b}} = \\displaystyle\\frac{\\sqrt{a}}{\\sqrt{b}}$.

", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "information", "showFeedbackIcon": true, "marks": 0, "unitTests": [], "useCustomName": false, "variableReplacements": []}], "showFeedbackIcon": true, "marks": 0, "unitTests": [], "useCustomName": false, "gaps": [{"customName": "", "customMarkingAlgorithm": "", "failureRate": 1, "checkingType": "absdiff", "showCorrectAnswer": true, "checkVariableNames": false, "vsetRange": [0, 1], "showFeedbackIcon": true, "vsetRangePoints": 5, "notallowed": {"message": "

You must simplify your answer further.

", "showStrings": false, "strings": ["/"], "partialCredit": 0}, "checkingAccuracy": 0.001, "scripts": {}, "answer": "sqrt({v})", "valuegenerators": [], "extendBaseMarkingAlgorithm": true, "musthave": {"message": "

You must simplify your answer further.

", "showStrings": true, "strings": ["sqrt", "(", ")"], "partialCredit": 0}, "variableReplacementStrategy": "originalfirst", "type": "jme", "marks": "2", "unitTests": [], "showPreview": true, "useCustomName": false, "variableReplacements": []}], "variableReplacements": []}, {"customName": "", "customMarkingAlgorithm": "", "sortAnswers": false, "scripts": {}, "prompt": "

Simplify $\\displaystyle\\frac{\\sqrt{\\simplify{({b}{m})^2*{s}}}}{\\var{m}}$.

\n

$\\displaystyle\\frac{\\sqrt{\\simplify{({b}*{m})^2*{s}}}}{\\var{m}} =$ [[0]]$\\sqrt{\\var{s}}$.

\n

", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "showFeedbackIcon": true, "marks": 0, "unitTests": [], "useCustomName": false, "gaps": [{"customName": "", "customMarkingAlgorithm": "", "failureRate": 1, "checkingType": "absdiff", "showCorrectAnswer": true, "checkVariableNames": false, "vsetRange": [0, 1], "showFeedbackIcon": true, "vsetRangePoints": 5, "checkingAccuracy": 0.001, "scripts": {}, "answer": "{b}", "valuegenerators": [], "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "type": "jme", "answerSimplification": "all", "marks": "2", "unitTests": [], "showPreview": true, "useCustomName": false, "variableReplacements": []}], "variableReplacements": []}, {"customName": "", "customMarkingAlgorithm": "", "sortAnswers": false, "scripts": {}, "prompt": "

Simplify $\\simplify{{d}sqrt({a}) - {b}sqrt({v}^2*{a})+{n}sqrt({b}^2*{a})}$.

\n

$\\simplify{{d}sqrt({a}) - {b}sqrt({v}^2*{a})+{n}sqrt({b}^2*{a})} =$ [[0]].

\n

", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "showFeedbackIcon": true, "marks": 0, "unitTests": [], "useCustomName": false, "gaps": [{"customName": "", "customMarkingAlgorithm": "", "failureRate": 1, "checkingType": "absdiff", "showCorrectAnswer": true, "checkVariableNames": false, "vsetRange": [0, 1], "showFeedbackIcon": true, "mustmatchpattern": {"pattern": "$n*sqrt($n)", "nameToCompare": "", "partialCredit": 0, "message": "You haven't fully simplified."}, "vsetRangePoints": 5, "checkingAccuracy": 0.001, "scripts": {}, "answer": "{(d-b*v+n*b)}sqrt({a})", "valuegenerators": [], "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "type": "jme", "marks": "2", "unitTests": [], "showPreview": true, "useCustomName": false, "variableReplacements": []}], "variableReplacements": []}, {"customName": "", "customMarkingAlgorithm": "", "sortAnswers": false, "scripts": {}, "prompt": "

Rationalise the denominator of the fraction $\\displaystyle\\frac{1}{\\sqrt{\\var{a}}}$.

\n

$\\displaystyle\\frac{1}{\\sqrt{\\var{a}}} =$  [[0]] [[1]] .

", "stepsPenalty": "1", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "steps": [{"customName": "", "customMarkingAlgorithm": "", "scripts": {}, "prompt": "

To rationalise the denominator of fractions in the form $\\frac{1}{\\sqrt{a}}$, multiply the top and bottom by $\\sqrt{a}$.

", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "information", "showFeedbackIcon": true, "marks": 0, "unitTests": [], "useCustomName": false, "variableReplacements": []}], "showFeedbackIcon": true, "marks": 0, "unitTests": [], "useCustomName": false, "gaps": [{"customName": "", "customMarkingAlgorithm": "", "failureRate": 1, "checkingType": "absdiff", "showCorrectAnswer": true, "checkVariableNames": false, "vsetRange": [0, 1], "showFeedbackIcon": true, "vsetRangePoints": 5, "notallowed": {"message": "", "showStrings": false, "strings": ["/"], "partialCredit": 0}, "checkingAccuracy": 0.001, "scripts": {}, "answer": "sqrt({a})", "valuegenerators": [], "extendBaseMarkingAlgorithm": true, "musthave": {"message": "", "showStrings": false, "strings": ["sqrt", "(", ")"], "partialCredit": 0}, "variableReplacementStrategy": "originalfirst", "type": "jme", "marks": "1", "unitTests": [], "showPreview": true, "useCustomName": false, "variableReplacements": []}, {"customName": "", "customMarkingAlgorithm": "", "scripts": {}, "failureRate": 1, "answer": "{a}", "valuegenerators": [], "checkingType": "absdiff", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "jme", "vsetRange": [0, 1], "showFeedbackIcon": true, "marks": 1, "vsetRangePoints": 5, "checkVariableNames": false, "unitTests": [], "showPreview": true, "useCustomName": false, "variableReplacements": [], "checkingAccuracy": 0.001}], "variableReplacements": []}, {"customName": "", "customMarkingAlgorithm": "", "sortAnswers": false, "scripts": {}, "prompt": "

Rationalise the denominator of the fraction $\\displaystyle\\frac{1}{\\var{n}+\\sqrt{\\var{a}}}$.

\n

$\\displaystyle\\frac{1}{\\var{n}+\\sqrt{\\var{a}}} =$  [[0]] [[1]] .

", "stepsPenalty": "1", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "steps": [{"customName": "", "customMarkingAlgorithm": "", "scripts": {}, "prompt": "

To rationalise the denominator of fractions in the form $\\displaystyle\\frac{1}{a+\\sqrt{b}}$, multiply the top and bottom by $a-\\sqrt{b}$.

", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "information", "showFeedbackIcon": true, "marks": 0, "unitTests": [], "useCustomName": false, "variableReplacements": []}], "showFeedbackIcon": true, "marks": 0, "unitTests": [], "useCustomName": false, "gaps": [{"customName": "", "customMarkingAlgorithm": "", "scripts": {}, "failureRate": 1, "answer": "{n}-sqrt({a})", "valuegenerators": [], "checkingType": "absdiff", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "jme", "vsetRange": [0, 1], "showFeedbackIcon": true, "marks": "1", "vsetRangePoints": 5, "checkVariableNames": false, "unitTests": [], "showPreview": true, "useCustomName": false, "variableReplacements": [], "checkingAccuracy": 0.001}, {"customName": "", "customMarkingAlgorithm": "", "scripts": {}, "failureRate": 1, "answer": "{n^2-a}", "valuegenerators": [], "checkingType": "absdiff", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "jme", "vsetRange": [0, 1], "showFeedbackIcon": true, "marks": 1, "vsetRangePoints": 5, "checkVariableNames": false, "unitTests": [], "showPreview": true, "useCustomName": false, "variableReplacements": [], "checkingAccuracy": 0.001}], "variableReplacements": []}, {"customName": "", "customMarkingAlgorithm": "", "sortAnswers": false, "scripts": {}, "prompt": "

Rationalise the denominator of the fraction $\\displaystyle\\frac{\\var{t}}{\\var{d+p}-\\sqrt{\\var{p}}}$.

\n

$\\displaystyle\\frac{\\var{t}}{\\var{d+p}-\\sqrt{\\var{p}}} =$  [[0]] [[1]] .

", "stepsPenalty": "1", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "steps": [{"customName": "", "customMarkingAlgorithm": "", "scripts": {}, "prompt": "

To rationalise the denominator of fractions in the form, $\\displaystyle\\frac{1}{a-\\sqrt{b}}$, multiply the top and bottom by ${a+\\sqrt{b}}$.

", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "information", "showFeedbackIcon": true, "marks": 0, "unitTests": [], "useCustomName": false, "variableReplacements": []}], "showFeedbackIcon": true, "marks": 0, "unitTests": [], "useCustomName": false, "gaps": [{"customName": "", "customMarkingAlgorithm": "", "failureRate": 1, "checkingType": "absdiff", "showCorrectAnswer": true, "checkVariableNames": false, "vsetRange": [0, 1], "showFeedbackIcon": true, "vsetRangePoints": 5, "checkingAccuracy": 0.001, "scripts": {}, "answer": "{t}({d+p}+sqrt({p}))", "valuegenerators": [], "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "type": "jme", "answerSimplification": "all", "marks": "1", "unitTests": [], "showPreview": true, "useCustomName": false, "variableReplacements": []}, {"customName": "", "customMarkingAlgorithm": "", "scripts": {}, "failureRate": 1, "answer": "{(d+p)^2-p}", "valuegenerators": [], "checkingType": "absdiff", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "jme", "vsetRange": [0, 1], "showFeedbackIcon": true, "marks": 1, "vsetRangePoints": 5, "checkVariableNames": false, "unitTests": [], "showPreview": true, "useCustomName": false, "variableReplacements": [], "checkingAccuracy": 0.001}], "variableReplacements": []}], "rulesets": {}, "advice": "

a)

\n

Surds can be manipulated using the rule

\n

 \\[\\sqrt{(ab)} = \\sqrt{a} \\times \\sqrt{b}.\\]

\n

We are asked to state which of $\\sqrt{\\var{p}}$, $\\sqrt{\\simplify{{a}*{n}^2}}$, and $\\sqrt{\\var{a}}$ can be simplified further. Commonly, surds can be simplified if the number inside of the square root has a square number as a factor.

\n

Here, $\\var{p}$ is a prime number which means that its only divisors are $\\var{p}$ and $1$.

\n

Therefore, $\\sqrt{\\var{p}}$ cannot be simplified any further.

\n

Similarly, $\\var{a}$ is also a prime number, so $\\sqrt{\\var{a}}$ also cannot be simplified any further.

\n

On the other hand, $\\simplify{{a}*{n}^2}$ is not a prime number and we can use the previous rule to simplify $\\sqrt{\\simplify{{a}*{n}^2}}$ as

\n

\\[
\\begin{align}
\\sqrt{\\simplify{{a}*{n}^2}} &= \\sqrt{\\simplify{{n}^2}} \\times \\sqrt{\\var{a}}\\\\
&= \\simplify{{n}*sqrt({a})}.
\\end{align}
\\]

\n

b)

\n

Using the same rule of manipulation as in part a), we can simplify $\\sqrt{\\simplify{{n}^2*{p}}}$ as

\n

\\[
\\begin{align}
\\sqrt{\\simplify{{n}^2*{p}}} &= \\sqrt{\\simplify{{n}^2}} \\times \\sqrt{\\var{p}}\\\\
&= \\simplify{{n}*sqrt({p})}.
\\end{align}
\\]

\n

c)

\n

Here, we can use both of the rules for manipulating surds:

\n

\\[\\sqrt{(ab)} = \\sqrt{a} \\times \\sqrt{b} \\text{.} \\]

\n

\\[ \\sqrt{\\frac{a}{b}} = \\frac{\\sqrt{a}}{\\sqrt{b}} \\text{.} \\]

\n

We can simplify $\\displaystyle\\frac{ \\sqrt{\\simplify{{a}*{v}}} }{ \\sqrt{\\var{a}} }$ as follows.

\n

\\[
\\begin{align}
\\frac{\\sqrt{\\simplify{{a}*{v}}}}{\\sqrt{\\var{a}}} &= \\frac{\\sqrt{\\var{a}} \\times \\sqrt{\\var{v}}}{\\sqrt{\\var{a}}} \\\\[0.5em]
&= \\frac{\\sqrt{\\var{a}}}{\\sqrt{\\var{a}}} \\times \\sqrt{\\var{v}} \\\\[0.5em]
&= \\simplify{{sqrt(a)/sqrt(a)}} \\times \\sqrt{\\var{v}} \\\\[0.5em]
&= \\sqrt{\\var{v}} \\text{.}
\\end{align}
\\]

\n

Or,

\n

\\[
\\begin{align}
\\frac{\\sqrt{\\simplify{{a}*{v}}}}{\\sqrt{\\var{a}}} &= \\sqrt{\\frac{\\simplify{{a}*{v}}}{\\var{a}}} \\\\[0.5em]
&= \\sqrt{\\var{v}} \\text{.}
\\end{align}
\\]

\n

d)

\n

We can simplify the fraction as

\n

\\[
\\begin{align}
\\frac{\\sqrt{\\simplify{({b}{m})^2*{s}}}}{\\var{m}} &= \\frac{\\sqrt{\\simplify{({b*m})^2}} \\times \\sqrt{\\var{s}}}{\\var{m}} \\\\[0.5em]
&= \\frac{\\simplify{{b*m}} \\times \\sqrt{\\var{s}}}{\\var{m}} \\\\[0.5em]
&= \\simplify{{b}*sqrt({s})} \\text{.}
\\end{align}
\\]

\n

e)

\n

\\[
\\begin{align}
\\simplify{{d}sqrt({a}) - {b}sqrt({v}^2{a})+{n}sqrt({b}^2*{a})} &= \\var{d}\\sqrt{\\var{a}} - \\var{b}(\\sqrt{\\simplify{{v}^2}} \\times \\sqrt{\\var{a}})+\\var{n}(\\sqrt{\\simplify{{b}^2}} \\times \\sqrt{\\var{a}}) \\\\
&= \\var{d}\\sqrt{\\var{a}} -\\var{b}(\\simplify{{v}*sqrt({a})})+\\var{n}(\\simplify{{b}*sqrt({a})}) \\\\
&= \\simplify{{d}sqrt({a})}-\\simplify{{b}*{v}sqrt({a})}+\\simplify{{n}*{b}sqrt({a})} \\\\
&= \\simplify{({d}-{b}*{v}+{n}*{b})sqrt({a})} \\text{.}
\\end{align}
\\]

\n

f)

\n

We rationalise the denominator of fractions of the form $\\displaystyle\\frac{1}{\\sqrt{a}}$, by multiplying the top and bottom by $\\sqrt{a}$.

\n

Therefore, to rationalise the denominator of the fraction $\\displaystyle\\frac{1}{\\sqrt{\\var{a}}}$, we multiply top and bottom by $\\sqrt{\\var{a}}$.

\n

\\[
\\begin{align}
\\frac{1}{\\sqrt{\\var{a}}} &= \\frac{1}{\\sqrt{\\var{a}}} \\times \\frac{\\sqrt{\\var{a}}}{\\sqrt{\\var{a}}} \\\\[0.5em]
&= \\frac{\\sqrt{\\var{a}}}{\\var{a}} \\text{.}
\\end{align}
\\]

\n

g)

\n

We rationalise the denominator of fractions of the form $\\displaystyle\\frac{1}{a+\\sqrt{b}}$ by multiplying the top and bottom by $a-\\sqrt{b}$.

\n

Therefore, to rationalise the denominator of the fraction $\\displaystyle\\frac{1}{\\var{n}+\\sqrt{\\var{a}}}$, we multiply the top and bottom by $\\var{n} - \\sqrt{\\var{a}}$.

\n

\\[
\\begin{align}
\\frac{1}{\\var{n}+\\sqrt{\\var{a}}} &=  \\frac{1}{\\var{n}+\\sqrt{\\var{a}}} \\times \\frac{\\var{n}-\\sqrt{\\var{a}}}{\\var{n}-\\sqrt{\\var{a}}} \\\\[0.5em]
&=\\frac{\\var{n}-\\sqrt{\\var{a}}}{(\\var{n}+\\sqrt{\\var{a}})(\\var{n}-\\sqrt{\\var{a}})} \\\\[0.5em]
&=\\frac{\\var{n}-\\sqrt{\\var{a}}}{\\simplify{{n}^2}-\\var{a}} \\\\[0.5em]
&=\\frac{\\var{n}-\\sqrt{\\var{a}}}{\\simplify{{n}^2-{a}}} \\text{.}
\\end{align}
\\]

\n

h)

\n

We rationalise the denominator of fractions of the form $\\displaystyle\\frac{1}{a-\\sqrt{b}}$ by multiplying the top and bottom by $a+\\sqrt{b}$.

\n

Therefore, to rationalise the denominator of the fraction $\\displaystyle\\frac{\\var{t}}{\\var{d+p}-\\sqrt{\\var{p}}}$, we multiply the top and bottom by $\\var{d+p}+\\sqrt{\\var{p}}$.

\n

\\[
\\begin{align}
\\frac{\\var{t}}{\\var{d+p}-\\sqrt{\\var{p}}} &= \\frac{\\var{t}}{\\var{d+p}-\\sqrt{\\var{p}}} \\times \\frac{\\var{d+p}+\\sqrt{\\var{p}}}{\\var{d+p}+\\sqrt{\\var{p}}} \\\\[0.5em]
&=\\frac{\\var{t}(\\var{d+p}+\\sqrt{\\var{p}})}{(\\var{d+p}-\\sqrt{\\var{p}})(\\var{d+p}+\\sqrt{\\var{p}})} \\\\[0.5em]
&=\\frac{\\var{t}(\\var{d+p}+\\sqrt{\\var{p}})}{\\simplify{{d+p}^2}-\\var{p}} \\\\[0.5em]
&=\\frac{\\var{t}(\\var{d+p}+\\sqrt{\\var{p}})}{\\simplify{{d+p}^2-{p}}} \\\\[0.5em]
&=\\simplify{{t}/{(d+p)^2-p}}(\\var{d+p}+\\sqrt{\\var{p}}) \\\\[0.5em]
&= \\simplify[all,!noleadingMinus]{({t*(d+p)}+{t}*sqrt({p}))/({(d+p)^2-p})} \\text{.}
\\end{align}
\\]

", "name": "John's copy of John's copy of John's copy of John's copy of John's copy of John's copy of John's copy of John's copy of John's copy of John's copy of John's Using Surds, Rationalising the Denominator", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Elliott Fletcher", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1591/"}, {"name": "John Wick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3326/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Elliott Fletcher", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1591/"}, {"name": "John Wick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3326/"}]}