// Numbas version: exam_results_page_options {"name": "Finding unknown coefficients of a polynomial, using the remainder theorem", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "statement": "

Consider the polynomial

\n

\\[ p(x) = \\simplify{{coef2_x3}x^3+s*x^2+{coef2_x}x+t}\\text{.}\\]

\n

The polynomial:

\n", "tags": ["taxonomy"], "ungrouped_variables": ["c", "rem1", "d", "rem2", "coef2_x3", "coef2_x", "numerator", "denominator", "s", "x", "y", "t"], "variables": {"denominator": {"group": "Ungrouped variables", "description": "

Denominator of s.

", "definition": "(-c)^2-(-d)^2", "name": "denominator", "templateType": "anything"}, "coef2_x3": {"group": "Ungrouped variables", "description": "

Coefficient of x^3.

", "definition": "random(1..2)", "name": "coef2_x3", "templateType": "anything"}, "d": {"group": "Ungrouped variables", "description": "

Dividing term 2.

", "definition": "random(-3..3 except c except [0,1,-c])", "name": "d", "templateType": "anything"}, "c": {"group": "Ungrouped variables", "description": "

Dividing term 1.

", "definition": "random(-3..3 except [0,1])", "name": "c", "templateType": "anything"}, "rem2": {"group": "Ungrouped variables", "description": "

Second remainder.

", "definition": "random(-3..3 except 0) ", "name": "rem2", "templateType": "anything"}, "rem1": {"group": "Ungrouped variables", "description": "

First remainder.

", "definition": "random(1..3)", "name": "rem1", "templateType": "anything"}, "s": {"group": "Ungrouped variables", "description": "", "definition": "numerator/denominator", "name": "s", "templateType": "anything"}, "coef2_x": {"group": "Ungrouped variables", "description": "

Coefficient of x.

", "definition": "random(-3..3 except [0,c,d])", "name": "coef2_x", "templateType": "anything"}, "t": {"group": "Ungrouped variables", "description": "", "definition": "(rem2-coef2_x3*(-d)^3-coef2_x*(-d) - (rem1 - rem2-coef2_x3*(-c)^3-coef2_x*(-c)+coef2_x3*(-d)^3+coef2_x*(-d))/((-c)^2-(-d)^2)*(-d)^2)", "name": "t", "templateType": "anything"}, "x": {"group": "Ungrouped variables", "description": "

Simplifies first coefficient of s.

", "definition": "(-(c))^2", "name": "x", "templateType": "anything"}, "y": {"group": "Ungrouped variables", "description": "

Simplifies second coefficient of s.

", "definition": "(-(d))^2", "name": "y", "templateType": "anything"}, "numerator": {"group": "Ungrouped variables", "description": "

Numerator of s

", "definition": "(rem1 - rem2-coef2_x3*(-c)^3-coef2_x*(-c)+coef2_x3*(-d)^3+coef2_x*(-d))*(-d)^2", "name": "numerator", "templateType": "anything"}}, "functions": {}, "preamble": {"css": "", "js": ""}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

This question tests the student's knowledge of the remainder theorem and the ways in which it can be applied.

"}, "parts": [{"steps": [{"variableReplacementStrategy": "originalfirst", "unitTests": [], "marks": 0, "customMarkingAlgorithm": "", "customName": "", "prompt": "

The remainder theorem states that if a polynomial $f(x)$ is divided by $(\\simplify{a*x-b})$ then the remainder is $f(\\frac{b}{a})$.

", "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "type": "information", "useCustomName": false, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}}], "unitTests": [], "marks": 0, "customMarkingAlgorithm": "", "stepsPenalty": 0, "variableReplacementStrategy": "originalfirst", "gaps": [{"variableReplacementStrategy": "originalfirst", "unitTests": [], "marks": 1, "customMarkingAlgorithm": "", "customName": "Coefficient of s", "showFractionHint": true, "showCorrectAnswer": true, "correctAnswerFraction": false, "mustBeReduced": false, "minValue": "{c}^2", "allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "extendBaseMarkingAlgorithm": true, "type": "numberentry", "maxValue": "{c}^2", "mustBeReducedPC": 0, "showFeedbackIcon": true, "useCustomName": true, "scripts": {}, "variableReplacements": [], "correctAnswerStyle": "plain"}, {"variableReplacementStrategy": "originalfirst", "unitTests": [], "marks": 1, "customMarkingAlgorithm": "", "customName": "Right-hand side", "showFractionHint": true, "showCorrectAnswer": true, "correctAnswerFraction": false, "mustBeReduced": false, "minValue": "{rem1}+{coef2_x3}*(c^3)+{coef2_x}*(c)", "allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "extendBaseMarkingAlgorithm": true, "type": "numberentry", "maxValue": "{rem1}+{coef2_x3}*(c^3)+{coef2_x}*(c)", "mustBeReducedPC": 0, "showFeedbackIcon": true, "useCustomName": true, "scripts": {}, "variableReplacements": [], "correctAnswerStyle": "plain"}], "customName": "", "showCorrectAnswer": true, "sortAnswers": false, "prompt": "

Using the remainder theorem for the remainder when $p(x)$ is divided by $(\\simplify{x+{c}})$, create an equation involving $s$ and $t$.

\n

[[0]]$s + t$ = [[1]].

\n

", "extendBaseMarkingAlgorithm": true, "type": "gapfill", "useCustomName": false, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}}, {"variableReplacementStrategy": "originalfirst", "unitTests": [], "marks": 0, "customMarkingAlgorithm": "", "customName": "", "gaps": [{"variableReplacementStrategy": "originalfirst", "unitTests": [], "marks": 1, "customMarkingAlgorithm": "", "customName": "", "showFractionHint": true, "showCorrectAnswer": true, "correctAnswerFraction": false, "mustBeReduced": false, "minValue": "{d}^2", "allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "extendBaseMarkingAlgorithm": true, "type": "numberentry", "maxValue": "{d}^2", "mustBeReducedPC": 0, "showFeedbackIcon": true, "useCustomName": false, "scripts": {}, "variableReplacements": [], "correctAnswerStyle": "plain"}, {"variableReplacementStrategy": "originalfirst", "unitTests": [], "marks": 1, "customMarkingAlgorithm": "", "customName": "", "showFractionHint": true, "showCorrectAnswer": true, "correctAnswerFraction": false, "mustBeReduced": false, "minValue": "{rem2}+{coef2_x3}*(d^3)+{coef2_x}*d", "allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "extendBaseMarkingAlgorithm": true, "type": "numberentry", "maxValue": "{rem2}+{coef2_x3}*(d^3)+{coef2_x}*d", "mustBeReducedPC": 0, "showFeedbackIcon": true, "useCustomName": false, "scripts": {}, "variableReplacements": [], "correctAnswerStyle": "plain"}], "showCorrectAnswer": true, "sortAnswers": false, "prompt": "

Using the remainder theorem for the remainder when $p(x)$ is divided by $(\\simplify{x+{d}})$, create another equation involving $s$ and $t$.

\n

[[0]]$s+t$ = [[1]].

\n

", "extendBaseMarkingAlgorithm": true, "type": "gapfill", "useCustomName": false, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}}, {"steps": [{"variableReplacementStrategy": "originalfirst", "unitTests": [], "marks": 0, "customMarkingAlgorithm": "", "customName": "", "prompt": "

Subtract the two simultaneous equations for $s$ and $t$, obtained in parts a) and b), from each other.

\n

Then rearrange this new equation to find the value of $s$.

", "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "type": "information", "useCustomName": false, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}}], "unitTests": [], "marks": 0, "customMarkingAlgorithm": "", "stepsPenalty": 0, "variableReplacementStrategy": "originalfirst", "gaps": [{"variableReplacementStrategy": "originalfirst", "unitTests": [], "marks": 1, "customMarkingAlgorithm": "", "customName": "", "showFractionHint": true, "showCorrectAnswer": true, "correctAnswerFraction": true, "mustBeReduced": true, "minValue": "s", "allowFractions": true, "notationStyles": ["plain", "en", "si-en"], "extendBaseMarkingAlgorithm": true, "type": "numberentry", "maxValue": "s", "mustBeReducedPC": 0, "showFeedbackIcon": true, "useCustomName": false, "scripts": {}, "variableReplacements": [], "correctAnswerStyle": "plain"}], "customName": "", "showCorrectAnswer": true, "sortAnswers": false, "prompt": "

Find the value of $s$. Reduce your answer to its simplest fractional form.

\n

$s =$ [[0]]

", "extendBaseMarkingAlgorithm": true, "type": "gapfill", "useCustomName": false, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}}, {"steps": [{"variableReplacementStrategy": "originalfirst", "unitTests": [], "marks": 0, "customMarkingAlgorithm": "", "customName": "", "prompt": "

Substitute the value of $s$ from part c) into one of the simultaneous equations for $s$ and $t$.

\n

Then, rearrange this equation to find the value of $t$.

", "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "type": "information", "useCustomName": false, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}}], "unitTests": [], "marks": 0, "customMarkingAlgorithm": "", "stepsPenalty": 0, "variableReplacementStrategy": "originalfirst", "gaps": [{"variableReplacementStrategy": "originalfirst", "unitTests": [], "marks": 1, "customMarkingAlgorithm": "", "customName": "", "showFractionHint": true, "showCorrectAnswer": true, "correctAnswerFraction": true, "mustBeReduced": true, "minValue": "{(rem2-coef2_x3*(-d)^3-coef2_x*(-d) - (rem1 - rem2-coef2_x3*(-c)^3-coef2_x*(-c)+coef2_x3*(-d)^3+coef2_x*(-d))/((-c)^2-(-d)^2)*(-d)^2)}", "allowFractions": true, "notationStyles": ["plain", "en", "si-en"], "extendBaseMarkingAlgorithm": true, "type": "numberentry", "maxValue": "{(rem2-coef2_x3*(-d)^3-coef2_x*(-d) - (rem1 - rem2-coef2_x3*(-c)^3-coef2_x*(-c)+coef2_x3*(-d)^3+coef2_x*(-d))/((-c)^2-(-d)^2)*(-d)^2)}", "mustBeReducedPC": 0, "showFeedbackIcon": true, "useCustomName": false, "scripts": {}, "variableReplacements": [], "correctAnswerStyle": "plain"}], "customName": "", "showCorrectAnswer": true, "sortAnswers": false, "prompt": "

Find the value of $t$. Reduce your answer to its simplest fractional form.

\n

$t =$ [[0]]

", "extendBaseMarkingAlgorithm": true, "type": "gapfill", "useCustomName": false, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}}], "type": "question", "rulesets": {}, "advice": "

We are told that the polynomial:

\n\n

a)

\n

Firstly, substituting $x = \\simplify{-{c}}$ into $p(x)$ gives us 

\n

\\begin{align}
p(\\simplify{-{c}}) &= \\simplify[all,!collectNumbers, fractionnumbers]{{coef2_x3*(-c)^3}+{(-c)^2}s+{coef2_x*(-c)}+t},\\\\
&= \\simplify[all,fractionnumbers]{{coef2_x3*(-c)^3}+{(-c)^2}s+{coef2_x*(-c)}+t}.
\\end{align}

\n

But, by the remainder theorem $p(\\simplify{-{c}}) = \\var{rem1}$ (using the first bullet point), so this becomes

\n

\\begin{align}
\\simplify[all,fractionnumbers]{{coef2_x3*(-{c})^3}+s*{(-{c})^2}+{coef2_x*(-{c})}+t} &= \\var{rem1},\\\\
\\simplify[all,fractionnumbers]{s*{x}+t} &= \\simplify[all,fractionnumbers]{{rem1}-{coef2_x3*(-{c})^3}-{coef2_x*(-{c})}}.
\\end{align}

\n

b)

\n

Similarly, substituting $x = \\simplify{-{d}}$ into $p(x)$, gives us

\n

\\begin{align}
p(\\simplify{-{d}}) &= \\simplify[all,!collectNumbers, fractionnumbers]{{coef2_x3*(-{d})^3}+{(-{d})^2}s+{coef2_x*(-{d})}+t},\\\\
&= \\simplify[all,fractionnumbers]{{coef2_x3*(-{d})^3}+{(-{d})^2}s+{coef2_x*(-{d})}+t}.
\\end{align}

\n

But, by the remainder theorem $p(\\simplify{-{d}}) = \\var{rem2}$ (using the second bullet point), so this becomes

\n

\\begin{align}
\\simplify[all,fractionnumbers]{{coef2_x3*(-{d})^3}+s*{(-{d})^2}+{coef2_x*(-{d})}+t} &= \\var{rem2},\\\\
\\simplify[all,fractionnumbers]{s*{y}+t} &= \\simplify[all,fractionnumbers]{{rem2}-{coef2_x3*(-{d})^3}-{coef2_x*(-{d})}}.
\\end{align}

\n

c)

\n

We now have two simultaneous equations for $s$ and $t$:

\n

\\begin{align}
\\simplify[all,fractionnumbers]{s*{x}+t} = \\simplify[all,fractionnumbers]{{rem1}-{coef2_x3*(-{c})^3}-{coef2_x*(-{c})}} \\\\
\\simplify[all,fractionnumbers]{s*{y}+t} = \\simplify[all,fractionnumbers]{{rem2}-{coef2_x3*(-{d})^3}-{coef2_x*(-{d})}}
\\end{align}

\n

Next, we subtract the second equation from the first equation.

\n

This allows us to cancel out the terms involving $t$ and gives us an equation only in terms of $s$, which we can then rearrange to find the value of $s$.

\n

Subtracting the two equations gives

\n

\\[\\simplify{s*{(-{c})^2-(-{d})^2}} = \\simplify[all,fractionnumbers]{{rem1 - coef2_x3*(-c)^3-coef2_x*(-c)-rem2+coef2_x3*(-d)^3+coef2_x*(-d)}}.\\]

\n

Then, we can rearrange this equation so that

\n

\\[s = \\simplify[all,fractionnumbers]{{rem1 - coef2_x3*(-c)^3-coef2_x*(-c)-rem2+coef2_x3*(-d)^3+coef2_x*(-d)}/{{(-c)^2-(-d)^2}}}.\\]

\n

d)

\n

We can calculate $t$ by substituting our value of $s$ into one of our original simultaneous equations. For example, let's use the equation

\n

\\[\\simplify[all,fractionnumbers]{s*{(-{d})^2}+t} = \\simplify[all,fractionnumbers]{{rem2}-{coef2_x3*(-{d})^3}-{coef2_x*(-{d})}}.\\]

\n

Substituting our value of $s$ into this equation gives us

\n

\\[
\\begin{align}
\\simplify[all,fractionnumbers,!noleadingMinus]{{numerator/denominator}+t} &= \\simplify[all,fractionnumbers]{{rem2-coef2_x3*(-d)^3-coef2_x*(-d)}},\\\\
t &= \\simplify[all,fractionnumbers]{{rem2-coef2_x3*(-d)^3-coef2_x*(-d) - numerator/denominator}}.
\\end{align}
\\]

\n

This same answer would've also been obtained if we had substituted our value of $s$ into the other equation instead.

", "extensions": [], "name": "Finding unknown coefficients of a polynomial, using the remainder theorem", "variablesTest": {"condition": "x > y", "maxRuns": 100}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Elliott Fletcher", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1591/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Elliott Fletcher", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1591/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}