// Numbas version: finer_feedback_settings {"name": "BS3.4", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["units1", "upper", "lower", "p1", "m", "amount", "p", "s", "stuff", "tol", "prob2", "prob1"], "name": "BS3.4", "tags": ["Normal distribution", "continuous random variable", "mean", "normal distribution", "normal tables", "probabilities", "random variable", "sc", "standard deviation", "statistical distributions", "statistics", "z-scores"], "preamble": {"css": "", "js": ""}, "advice": "\n
1. Converting to $\\operatorname{N}(0,1)$
\n$\\simplify[all,!collectNumbers]{P(X < {lower}) = P(Z < ({lower} -{m}) / {s}) = P(Z < {lower-m}/{s}) = 1 -P(Z < {m-lower}/{s})} = 1 -\\var{p} = \\var{precround(1 -p,4)}$ to 4 decimal places.
\n2. Converting to $\\operatorname{N}(0,1)$
\n$\\simplify[all,!collectNumbers]{P(X > {upper}) = P(Z > ({upper} -{m}) / {s}) = P(Z > {upper-m}/{s}) = 1 -P(Z < {upper-m}/{s})} = 1-\\var{p1} = \\var{precround(1 -p1,4)}$ to 4 decimal places.
\n ", "rulesets": {}, "parts": [{"prompt": "Find the probability that in a particular week the {amount} is less than {lower} {units1}:
\nProbability = [[0]] (to 4 decimal places)
\nFind the probability that in a particular week the {amount} is greater than {upper} {units1}:
\nProbability = [[1]] (to 4 decimal places)
", "marks": 0, "gaps": [{"allowFractions": false, "marks": 1, "maxValue": "prob1+tol", "minValue": "prob1-tol", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "marks": 1, "maxValue": "prob2+tol", "minValue": "prob2-tol", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "\nThe {amount}, $X$, of {stuff} is normally distributed with mean {m}k and standard deviation {s}{units1}.
\ni.e. \\[X \\sim \\operatorname{N}(\\var{m},\\var{s}^2)\\]
\n\n ", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"units1": {"definition": "\"k Wh\"", "templateType": "anything", "group": "Ungrouped variables", "name": "units1", "description": ""}, "upper": {"definition": "random(m+0.5s..m+1.5*s#5)", "templateType": "anything", "group": "Ungrouped variables", "name": "upper", "description": ""}, "lower": {"definition": "random(m-1.5*s..m-0.5s#5)", "templateType": "anything", "group": "Ungrouped variables", "name": "lower", "description": ""}, "p1": {"definition": "normalcdf((upper-m)/s,0,1)", "templateType": "anything", "group": "Ungrouped variables", "name": "p1", "description": ""}, "m": {"definition": "random(750..1250#50)", "templateType": "anything", "group": "Ungrouped variables", "name": "m", "description": ""}, "s": {"definition": "random(60..100#10)", "templateType": "anything", "group": "Ungrouped variables", "name": "s", "description": ""}, "p": {"definition": "normalcdf((m-lower)/s,0,1)", "templateType": "anything", "group": "Ungrouped variables", "name": "p", "description": ""}, "amount": {"definition": "\"electricity consumption\"", "templateType": "anything", "group": "Ungrouped variables", "name": "amount", "description": ""}, "stuff": {"definition": "\"a frozen foods warehouse each week in the summer months \"", "templateType": "anything", "group": "Ungrouped variables", "name": "stuff", "description": ""}, "tol": {"definition": "0.0001", "templateType": "anything", "group": "Ungrouped variables", "name": "tol", "description": ""}, "prob2": {"definition": "precround(1-normalcdf(upper,m,s),4)", "templateType": "anything", "group": "Ungrouped variables", "name": "prob2", "description": ""}, "prob1": {"definition": "precround(normalcdf(lower,m,s),4)", "templateType": "anything", "group": "Ungrouped variables", "name": "prob1", "description": ""}}, "metadata": {"notes": "\n \t\t
1/1/2012:
\n \t\tCan be configured to other applications using the string variables suppplied. Included tag sc.
\n \t\t", "description": "Given a random variable $X$ normally distributed as $\\operatorname{N}(m,\\sigma^2)$ find probabilities $P(X \\gt a),\\; a \\gt m;\\;\\;P(X \\lt b),\\;b \\lt m$.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}