// Numbas version: finer_feedback_settings {"name": "Vector addition of three forces", "extensions": ["geogebra", "weh", "quantities"], "custom_part_types": [{"source": {"pk": 24, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/24/edit"}, "name": "Angle quantity", "short_name": "angle-quantity-from-reference", "description": "

Angle as a quantity in degrees.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "plain_string(settings['correct_quantity'])", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": false}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \nright and good_units and right_sign and angle_in_range, add_credit(1.0,'Correct.'),\nright and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\nright and right_sign and not good_units, add_credit(settings['C2'],'Correct angle, but missing degree symbol.'),\nright and good_units and right_sign and not angle_in_range,add_credit(settings['C1'],'Angle is out of range.'),\nclose and good_units, add_credit(settings['C1'],'Close.'),\nclose and not good_units, add_credit(settings['C3'],'Answer is close, but missing degree symbol.'),\nincorrect('Wrong answer.')\n)\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\ncorrect_scalar:\nscalar(correct_quantity)\n \n\ncorrect_quantity:\nsettings['correct_quantity']\n\ncorrect_units:\nunits(correct_quantity)\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\njoin(\nsplit(studentAnswer[len(match_student_number[0])..len(studentAnswer)]\n,\"\u00b0\"),\" deg\")\n\n\n\ngood_units:\ntry(\nkind(quantity(1, student_units))= kind(correct_quantity),\nmsg,\nfeedback(msg);false)\n\nstudent_quantity:\nswitch(not good_units, \nstudent_scalar * correct_units, \nnot right_sign,\n-quantity(student_scalar, student_units),\nquantity(student_scalar,student_units)\n)\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)\n\nangle_in_range:\nif(settings['restrict_angle'], abs(student_scalar) <= 90, true)\n\nright:\nwithinTolerance(abs(student_scalar), abs(correct_scalar), settings['right'])\n\nclose:\nwithinTolerance(student_scalar, correct_scalar, settings['close'])", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \nright and good_units and right_sign and angle_in_range, add_credit(1.0,'Correct.'),\nright and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\nright and right_sign and not good_units, add_credit(settings['C2'],'Correct angle, but missing degree symbol.'),\nright and good_units and right_sign and not angle_in_range,add_credit(settings['C1'],'Angle is out of range.'),\nclose and good_units, add_credit(settings['C1'],'Close.'),\nclose and not good_units, add_credit(settings['C3'],'Answer is close, but missing degree symbol.'),\nincorrect('Wrong answer.')\n)"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)"}, {"name": "correct_scalar", "description": "", "definition": "scalar(correct_quantity)\n "}, {"name": "correct_quantity", "description": "", "definition": "settings['correct_quantity']"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "", "definition": "join(\nsplit(studentAnswer[len(match_student_number[0])..len(studentAnswer)]\n,\"\u00b0\"),\" deg\")\n\n"}, {"name": "good_units", "description": "", "definition": "try(\nkind(quantity(1, student_units))= kind(correct_quantity),\nmsg,\nfeedback(msg);false)"}, {"name": "student_quantity", "description": "", "definition": "switch(not good_units, \nstudent_scalar * correct_units, \nnot right_sign,\n-quantity(student_scalar, student_units),\nquantity(student_scalar,student_units)\n)"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity)"}, {"name": "angle_in_range", "description": "", "definition": "if(settings['restrict_angle'], abs(student_scalar) <= 90, true)"}, {"name": "right", "description": "

Will check for correct sign elswhere.

", "definition": "withinTolerance(abs(student_scalar), abs(correct_scalar), settings['right'])"}, {"name": "close", "description": "

Must have correct sign to be close.

", "definition": "withinTolerance(student_scalar, correct_scalar, settings['close'])\n"}], "settings": [{"name": "correct_quantity", "label": "Correct Angle as quantity ", "help_url": "", "hint": "", "input_type": "code", "default_value": "qty(45,'deg')", "evaluate": true}, {"name": "right", "label": "Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within ± this amount from the correct value.", "input_type": "code", "default_value": "0.1", "evaluate": true}, {"name": "restrict_angle", "label": "Less than 90\u00b0", "help_url": "", "hint": "When checked, angle must be between -90° and +90°.", "input_type": "checkbox", "default_value": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units.", "input_type": "percent", "default_value": "75"}, {"name": "close", "label": " Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within ± this amount from the correct value.", "input_type": "code", "default_value": "0.5", "evaluate": true}, {"name": "C2", "label": "No units or wrong sign", "help_url": "", "hint": "Partial credit for forgetting units or using wrong sign.", "input_type": "percent", "default_value": "50"}, {"name": "C3", "label": "Close, no units.", "help_url": "", "hint": "Partial Credit for close value without units.", "input_type": "percent", "default_value": "25"}], "public_availability": "restricted", "published": false, "extensions": ["quantities"]}, {"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "

A value with units marked right if within an adjustable % error of the correct value.  Marked close if within a wider margin of error.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "

Modify the unit portion of the student's answer by

\n

1. replacing \"ohms\" with \"ohm\"  case insensitive

\n

2. replacing '-' with ' ' 

\n

3. replacing '°' with ' deg' 

\n

to allow answers like 10 ft-lb and 30°

", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "

This fixes the student answer for two common errors.  

\n

If student_units are wrong  - replace with correct units

\n

If student_scalar has the wrong sign - replace with right sign

\n

If student makes both errors, only one gets fixed.

", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "

Only marked close if the student actually has the right sign.

", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units.  if correct answer is 100 N and close is ±1%,
99  N is accepted.", "input_type": "percent", "default_value": "75"}, {"name": "C2", "label": "No units or wrong sign", "help_url": "", "hint": "Partial credit for forgetting units or using wrong sign.
If the correct answer is 100 N, both 100 and -100 N are accepted.", "input_type": "percent", "default_value": "50"}, {"name": "C3", "label": "Close, no units.", "help_url": "", "hint": "Partial Credit for close value but forgotten units.
This value would be close if the expected units were provided.  If the correct answer is 100 N, and close is ±1%,
99 is accepted.", "input_type": "percent", "default_value": "25"}], "public_availability": "always", "published": true, "extensions": ["quantities"]}], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Vector addition of three forces", "variable_groups": [{"variables": ["O", "A", "B", "C", "MA", "MB", "MC", "units"], "name": "Inputs"}, {"variables": ["F_A", "F_B", "F_C", "R", "theta", "angle_from_ref", "angle"], "name": "Forces"}], "metadata": {"description": "

Determine the resultant of three random 2-D vectors.  

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "ungrouped_variables": [], "functions": {"fmt": {"language": "jme", "parameters": [["v", "number"]], "definition": "siground(v,3)", "type": "number"}}, "extensions": ["geogebra", "quantities", "weh"], "variablesTest": {"condition": "A <> B and B <> C and C <> A and\nMA < 10 abs(A) and\nMB < 10 abs(B) and\nMC < 10 abs(C)", "maxRuns": 100}, "type": "question", "statement": "

{geogebra_applet('cmq7dk74',[['A',A], ['B',B], ['C',C], ['O',O], ['MA',MA], ['MB',MB], ['MC',MC]])}

\n

Determine the resultant of the three forces shown.

", "preamble": {"js": "", "css": ""}, "tags": ["mechanics", "Mechanics", "statics", "Statics", "Vector addition"], "parts": [{"customMarkingAlgorithm": "", "sortAnswers": false, "scripts": {"mark": {"order": "after", "script": "ndex = Numbas.jme.unwrapValue(this.studentAnswerAsJME());\nangles = Numbas.jme.unwrapValue(Numbas.exam.currentQuestion.scope.getVariable('angle_from_ref'));\nans = Qty(angles[index]+' deg');\nthis.parentPart.gaps[2].settings.correct_quantity.value=ans;\nthis.markingComment(\"For your axis, the direction is \" + ans.toString() +'.');"}}, "prompt": "

Magnitude:  $R =$ [[0]]  Direction: $\\theta = $  [[2]] measured from the [[1]].

\n

", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "showFeedbackIcon": true, "marks": 0, "unitTests": [], "gaps": [{"showFeedbackIcon": true, "type": "engineering-answer", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "unitTests": [], "settings": {"right": "0.2", "C2": "50", "close": "1.0", "C1": "75", "correctAnswer": "qty(abs(R),units)", "C3": "25"}, "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true}, {"showFeedbackIcon": true, "type": "drop-down-axis-reference", "marks": "0", "scripts": {"mark": {"order": "after", "script": "index = Numbas.jme.unwrapValue(this.studentAnswerAsJME());\nangles = Numbas.jme.unwrapValue(Numbas.exam.currentQuestion.scope.getVariable('angle_from_ref'));\nans = Qty(angles[index]+' deg');\nthis.parentPart.gaps[2].settings.correct_quantity.value=ans;\nthis.markingComment(\"For your axis, the direction is \" + ans.toString() +'.');"}}, "customMarkingAlgorithm": "", "unitTests": [], "settings": {"dummy": "'ignore'"}, "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true}, {"showFeedbackIcon": true, "type": "angle-quantity-from-reference", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "unitTests": [], "settings": {"right": "0.2", "C2": "50", "close": "1.0", "correct_quantity": "qty(angle_from_ref[0],'deg')", "C1": "75", "C3": "25", "restrict_angle": true}, "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true}], "variableReplacements": []}], "rulesets": {}, "advice": "

\n
    \n
  1. Find the scalar components of the three forces.
  2. \n
  3. Add the scalar components of the components to find the scalar components of the resultant.
    $\\begin{align}R_x &= \\Sigma F_x  & R_y &= \\Sigma F_y \\\\R_x &= A_x + B_x + C_x  & R_y &= A_y + B_y + C_y \\\\R_x &= (\\var{fmt(F_A[0])}) +(\\var{fmt(F_B[0])}) + (\\var{fmt(F_C[0]) }) & R_y &=( \\var{fmt(F_A[1])}) + (\\var{fmt(F_B[1])} )+(\\var{fmt(F_C[1])})\\\\R_x &= \\var{qty(fmt(R[0]),units)} & R_y &=\\var{qty(fmt(R[1]),units)}\\end{align}$
  4. \n
  5. Draw a triangle representing $\\vec{R}= \\vec{R_x} + \\vec{R_y}$,
  6. \n
  7. Use the pythagorean theorem and inverse tangent to find the magnitude and direction of $\\textbf{R}.$
    $ \\begin{align}R &= \\sqrt{R_x^2  + R_y^2} = \\var{qty(fmt(abs(R)),units)}& \\theta&=\\arctan{\\left(\\left|\\dfrac{R_y}{R_x}\\right|\\right)} = \\var{fmt(angle)}°\\end{align}$
  8. \n
", "variables": {"angle": {"templateType": "anything", "definition": "degrees(arctan(abs(R[1]/R[0])))", "description": "", "group": "Forces", "name": "angle"}, "F_A": {"templateType": "anything", "definition": "MA A /abs(A)", "description": "", "group": "Forces", "name": "F_A"}, "MB": {"templateType": "anything", "definition": "random(10..50)", "description": "", "group": "Inputs", "name": "MB"}, "F_B": {"templateType": "anything", "definition": "MB B/abs(B)", "description": "", "group": "Forces", "name": "F_B"}, "C": {"templateType": "anything", "definition": "random([vector(random([4,-4]),random(-4..4)),vector(random(-4..4),random([4,-4]))])", "description": "", "group": "Inputs", "name": "C"}, "R": {"templateType": "anything", "definition": "(F_A+F_B+F_C)", "description": "", "group": "Forces", "name": "R"}, "B": {"templateType": "anything", "definition": "random([vector(random([4,-4]),random(-4..4)),vector(random(-4..4),random([4,-4]))])", "description": "", "group": "Inputs", "name": "B"}, "F_C": {"templateType": "anything", "definition": "MC C/abs(C)\n", "description": "", "group": "Forces", "name": "F_C"}, "theta": {"templateType": "anything", "definition": "degrees(atan2(R[1],R[0]))", "description": "", "group": "Forces", "name": "theta"}, "units": {"templateType": "anything", "definition": "random(['lb','N','kN'])", "description": "", "group": "Inputs", "name": "units"}, "MC": {"templateType": "anything", "definition": "random(10..50)", "description": "", "group": "Inputs", "name": "MC"}, "MA": {"templateType": "anything", "definition": "random(10..50)\n", "description": "", "group": "Inputs", "name": "MA"}, "A": {"templateType": "anything", "definition": "random([vector(random([4,-4]),random(-4..4)),vector(random(-4..4),random([4,-4]))])", "description": "", "group": "Inputs", "name": "A"}, "O": {"templateType": "anything", "definition": "vector(0,0)", "description": "", "group": "Inputs", "name": "O"}, "angle_from_ref": {"templateType": "anything", "definition": "let(ang,theta,\n[if(ang>180,ang-360,ang),\nif(ang>270,ang-450,if(ang < -90,ang+270,ang-90)),\nif(ang>0,ang-180,ang+180),\nif(ang>90,ang-270,90+ang)])\n\n", "description": "", "group": "Forces", "name": "angle_from_ref"}}, "contributors": [{"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}, {"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}]}]}], "contributors": [{"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}, {"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}]}