// Numbas version: finer_feedback_settings {"name": "Quotient rule - differentiate linear over quadratic", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"tags": [], "statement": "

Differentiate the following function $f(x)$ using the quotient rule.

", "variable_groups": [], "ungrouped_variables": ["a", "c", "b", "d", "f", "s2", "s1", "det", "c1"], "variables": {"s1": {"group": "Ungrouped variables", "description": "", "definition": "random(1,-1)", "name": "s1", "templateType": "anything"}, "s2": {"group": "Ungrouped variables", "description": "", "definition": "random(1,-1)", "name": "s2", "templateType": "anything"}, "b": {"group": "Ungrouped variables", "description": "", "definition": "s1*random(1..9)", "name": "b", "templateType": "anything"}, "det": {"group": "Ungrouped variables", "description": "", "definition": "a*f-b*d", "name": "det", "templateType": "anything"}, "c1": {"group": "Ungrouped variables", "description": "", "definition": "random(1..8)", "name": "c1", "templateType": "anything"}, "c": {"group": "Ungrouped variables", "description": "", "definition": "if(a*d=b*c1,c1+1,c1)", "name": "c", "templateType": "anything"}, "f": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9)", "name": "f", "templateType": "anything"}, "a": {"group": "Ungrouped variables", "description": "", "definition": "random(2..9)", "name": "a", "templateType": "anything"}, "d": {"group": "Ungrouped variables", "description": "", "definition": "s2*random(1..9)", "name": "d", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "preamble": {"css": "", "js": ""}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

The derivative of $\\displaystyle \\frac{ax+b}{cx^2+dx+f}$ is $\\displaystyle \\frac{g(x)}{(cx^2+dx+f)^2}$. Find $g(x)$.

"}, "parts": [{"variableReplacementStrategy": "originalfirst", "unitTests": [], "marks": 0, "customMarkingAlgorithm": "", "stepsPenalty": 0, "customName": "", "prompt": "\n\t\t\t

\\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}x^2+{d}x+{f})}\\]
You are given that \\[\\frac{df}{dx}=\\simplify[std]{g(x)/({c}x^2+{d}x+{f})^2}\\]
for a polynomial $g(x)$. You are asked to find $g(x)$

\n\t\t\t

$g(x)=\\;$[[0]]

\n\t\t\t

Input numbers as fractions or integers and not as decimals.

\n\t\t\t

Click on Show steps for more information. You will not lose any marks by doing so.

\n\t\t\t", "steps": [{"variableReplacementStrategy": "originalfirst", "unitTests": [], "marks": 0, "customMarkingAlgorithm": "", "customName": "", "prompt": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

", "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "type": "information", "useCustomName": false, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}}], "showCorrectAnswer": true, "sortAnswers": false, "gaps": [{"variableReplacementStrategy": "originalfirst", "vsetRange": [0, 1], "answerSimplification": "std", "notallowed": {"partialCredit": 0, "showStrings": false, "message": "

Input numbers as fractions or integers and not as decimals.

", "strings": ["."]}, "checkingType": "absdiff", "type": "jme", "showFeedbackIcon": true, "useCustomName": false, "customMarkingAlgorithm": "", "valuegenerators": [{"value": "", "name": "x"}], "variableReplacements": [], "scripts": {}, "checkVariableNames": false, "failureRate": 1, "marks": 3, "unitTests": [], "customName": "", "answer": "{-c*a}x^2+{-2*b*c}x+{a*f-b*d}", "showCorrectAnswer": true, "vsetRangePoints": 5, "checkingAccuracy": 0.001, "extendBaseMarkingAlgorithm": true, "showPreview": true}], "extendBaseMarkingAlgorithm": true, "type": "gapfill", "useCustomName": false, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}}], "advice": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

\n

For this example:

\n

\\[\\simplify[std]{u = ({a}x+{b})}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {a}}\\]

\n

\\[\\simplify[std]{v = ({c} * x^2+{d}x+{f})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {2*c}x+{d}}\\]

\n

Hence on substituting into the quotient rule above we get:

\n

\\[\\begin{eqnarray*} \\frac{df}{dx}&=&\\simplify[std]{({a}({c}x^2+{d}x+{f})-({2*c}x+{d})({a}x+{b}))/({c}x^2+{d}x+{f})^2}\\\\ &=&\\simplify[std]{({a*c}x^2+{a*d}x+{a*f}-{2*c*a}x^2-{a*d+2*c*b}x-{d*b})/({c}x^2+{d}x+{f})^2}\\\\ &=&\\simplify[std]{({-c*a}x^2+{-2*b*c}x+{a*f-d*b})/({c}x^2+{d}x+{f})^2} \\end{eqnarray*}\\]
Hence $g(x)=\\simplify[std]{{-c*a}x^2+{-2*b*c}x+{a*f-d*b}}$

", "functions": {}, "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "extensions": [], "name": "Quotient rule - differentiate linear over quadratic", "type": "question", "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}