// Numbas version: finer_feedback_settings {"name": "Expanding a binomial product (monic factors)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"rulesets": {}, "variable_groups": [], "tags": [], "parts": [{"variableReplacementStrategy": "originalfirst", "steps": [{"variableReplacementStrategy": "originalfirst", "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "unitTests": [], "type": "information", "prompt": "
Method 1 (the distributive law)
\nWe expand $\\simplify{(x+{a[0]})(x+{b[0]})}$ one bracket at a time.
\n$\\simplify{(x+{a[0]})(x+{b[0]})}$ | \n$=$ | \n\n $\\simplify{x(x+{b[0]})+{a[0]}(x+{b[0]})}$ \n | \n\n (each term in one bracket times the entire other bracket) \n | \n
\n | $=$ | \n$\\simplify{x^2+{b[0]}x+{a[0]}x+{a[0]*b[0]}}$ | \n(use the distributive law on each bracket) | \n
\n | $=$ | \n$\\simplify{x^2+{b[0]+a[0]}x+{a[0]*b[0]}}$ | \n(collect like terms) | \n
Method 2 (FOIL)
\nMultiply the First terms in each bracket, then the Outer terms, then the Inner terms and then the Last terms. Add them all together.
\n$\\simplify{(x+{a[0]})(x+{b[0]})}$ | \n$=$ | \n\n $\\simplify[basic]{x^2+{b[0]}x+{a[0]}x+{a[0]*b[0]}}$ \n | \n\n (First, Outer, Inner, Last) \n | \n
\n | $=$ | \n$\\simplify{x^2+{b[0]+a[0]}x+{a[0]*b[0]}}$ | \n(collect like terms) | \n
Ensure you don't use brackets in your answer.
"}, "checkingAccuracy": 0.001, "customMarkingAlgorithm": "", "answer": "x^2+{a[0]+b[0]}x+{a[0]*b[0]}"}], "unitTests": [], "type": "gapfill", "prompt": "$\\simplify{(x+{a[0]})(x+{b[0]})}$ = [[0]]
\n\n"}, {"variableReplacementStrategy": "originalfirst", "steps": [{"variableReplacementStrategy": "originalfirst", "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "unitTests": [], "type": "information", "prompt": "Method 1 (the distributive law)
\nWe expand $\\simplify{(x+{a[1]})(x+{b[1]})}$ one bracket at a time.
\n$\\simplify{(x+{a[1]})(x+{b[1]})}$ | \n$=$ | \n\n $\\simplify{x(x+{b[1]})+{a[1]}(x+{b[1]})}$ \n | \n\n (each term in one bracket times the entire other bracket) \n | \n
\n | $=$ | \n$\\simplify{x^2+{b[1]}x+{a[1]}x+{a[1]*b[1]}}$ | \n(use the distributive law on each bracket) | \n
\n | $=$ | \n$\\simplify{x^2+{b[1]+a[1]}x+{a[1]*b[1]}}$ | \n(collect like terms) | \n
Method 2 (FOIL)
\nMultiply the First terms in each bracket, then the Outer terms, then the Inner terms and then the Last terms. Add them all together.
\n$\\simplify{(x+{a[1]})(x+{b[1]})}$ | \n$=$ | \n\n $\\simplify[basic]{x^2+{b[1]}x+{a[1]}x+{a[1]*b[1]}}$ \n | \n\n (First, Outer, Inner, Last) \n | \n
\n | $=$ | \n$\\simplify{x^2+{b[1]+a[1]}x+{a[1]*b[1]}}$ | \n(collect like terms) | \n
Ensure you don't use brackets in your answer.
"}, "checkingAccuracy": 0.001, "customMarkingAlgorithm": "", "answer": "x^2+{a[1]+b[1]}x+{a[1]*b[1]}"}], "unitTests": [], "type": "gapfill", "prompt": "$\\simplify{(x+{a[1]})(x+{b[1]})}$ = [[0]]
\n\n"}, {"variableReplacementStrategy": "originalfirst", "steps": [{"variableReplacementStrategy": "originalfirst", "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "unitTests": [], "type": "information", "prompt": "Method 1 (the distributive law)
\nWe expand $\\simplify{(m+{a[2]})(m+{b[2]})}$ one bracket at a time.
\n$\\simplify{(m+{a[2]})(m+{b[2]})}$ | \n$=$ | \n\n $\\simplify{m(m+{b[2]})+{a[2]}(m+{b[2]})}$ \n | \n\n (each term in one bracket times the entire other bracket) \n | \n
\n | $=$ | \n$\\simplify{m^2+{b[2]}m+{a[2]}m+{a[2]*b[2]}}$ | \n(use the distributive law on each bracket) | \n
\n | $=$ | \n$\\simplify{m^2+{b[2]+a[2]}m+{a[2]*b[2]}}$ | \n(collect like terms) | \n
Method 2 (FOIL)
\nMultiply the First terms in each bracket, then the Outer terms, then the Inner terms and then the Last terms. Add them all together.
\n$\\simplify{(m+{a[2]})(m+{b[2]})}$ | \n$=$ | \n\n $\\simplify[basic]{m^2+{b[2]}m+{a[2]}m+{a[2]*b[2]}}$ \n | \n\n (First, Outer, Inner, Last) \n | \n
\n | $=$ | \n$\\simplify{m^2+{b[2]+a[2]}m+{a[2]*b[2]}}$ | \n(collect like terms) | \n
Ensure you don't use brackets in your answer.
"}, "checkingAccuracy": 0.001, "customMarkingAlgorithm": "", "answer": "m^2+{a[2]+b[2]}m+{a[2]*b[2]}"}], "unitTests": [], "type": "gapfill", "prompt": "$\\simplify{(m+{a[2]})(m+{b[2]})}$ = [[0]]
\n\n"}, {"variableReplacementStrategy": "originalfirst", "steps": [{"variableReplacementStrategy": "originalfirst", "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "unitTests": [], "type": "information", "prompt": "Method 1 (the distributive law)
\nWe expand $\\simplify{(t+{a[3]})(t+{b[3]})}$ one bracket at a time.
\n$\\simplify{(t+{a[3]})(t+{b[3]})}$ | \n$=$ | \n\n $\\simplify{t(t+{b[3]})+{a[3]}(t+{b[3]})}$ \n | \n\n (each term in one bracket times the entire other bracket) \n | \n
\n | $=$ | \n$\\simplify{t^2+{b[3]}t+{a[3]}t+{a[3]*b[3]}}$ | \n(use the distributive law on each bracket) | \n
\n | $=$ | \n$\\simplify{t^2+{b[3]+a[3]}t+{a[3]*b[3]}}$ | \n\n\n (collect like terms) \n | \n
Method 2 (FOIL)
\nMultiply the First terms in each bracket, then the Outer terms, then the Inner terms and then the Last terms. Add them all together.
\n$\\simplify{(t+{a[3]})(t+{b[3]})}$ | \n$=$ | \n\n $\\simplify[basic]{t^2+{b[3]}t+{a[3]}t+{a[3]*b[3]}}$ \n | \n\n (First, Outer, Inner, Last) \n | \n
\n | $=$ | \n$\\simplify{t^2+{b[3]+a[3]}t+{a[3]*b[3]}}$ | \n(collect like terms) | \n
Ensure you don't use brackets in your answer.
"}, "checkingAccuracy": 0.001, "customMarkingAlgorithm": "", "answer": "t^2+{a[3]+b[3]}t+{a[3]*b[3]}"}], "unitTests": [], "type": "gapfill", "prompt": "$\\simplify{(t+{a[3]})(t+{b[3]})}$ = [[0]]
\n\n"}], "functions": {}, "name": "Expanding a binomial product (monic factors)", "ungrouped_variables": ["a", "b"], "preamble": {"js": "", "css": ""}, "variablesTest": {"maxRuns": "127", "condition": ""}, "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": ""}, "extensions": [], "statement": "Expand and simplify the following.
", "advice": "", "variables": {"b": {"description": "", "definition": "shuffle(-12..12 except 0)[0..4]", "group": "Ungrouped variables", "name": "b", "templateType": "anything"}, "a": {"description": "", "definition": "shuffle(-12..12 except 0)[0..4]", "group": "Ungrouped variables", "name": "a", "templateType": "anything"}}, "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}