// Numbas version: finer_feedback_settings {"name": "Expanding a binomial product (monic factors)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"rulesets": {}, "variable_groups": [], "tags": [], "parts": [{"variableReplacementStrategy": "originalfirst", "steps": [{"variableReplacementStrategy": "originalfirst", "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "unitTests": [], "type": "information", "prompt": "

Method 1 (the distributive law)

\n

We expand $\\simplify{(x+{a[0]})(x+{b[0]})}$ one bracket at a time. 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\simplify{(x+{a[0]})(x+{b[0]})}$$=$\n

$\\simplify{x(x+{b[0]})+{a[0]}(x+{b[0]})}$

\n
\n

          (each term in one bracket times the entire other bracket)

\n
$=$$\\simplify{x^2+{b[0]}x+{a[0]}x+{a[0]*b[0]}}$          (use the distributive law on each bracket)
$=$$\\simplify{x^2+{b[0]+a[0]}x+{a[0]*b[0]}}$          (collect like terms)
\n

Method 2 (FOIL)

\n

Multiply the First terms in each bracket, then the Outer terms, then the Inner terms and then the Last terms. Add them all together.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\simplify{(x+{a[0]})(x+{b[0]})}$$=$\n

$\\simplify[basic]{x^2+{b[0]}x+{a[0]}x+{a[0]*b[0]}}$

\n
\n

          (First, Outer, Inner, Last)

\n
$=$$\\simplify{x^2+{b[0]+a[0]}x+{a[0]*b[0]}}$          (collect like terms)
"}], "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "sortAnswers": false, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "stepsPenalty": "1", "gaps": [{"variableReplacementStrategy": "originalfirst", "unitTests": [], "showFeedbackIcon": true, "vsetRangePoints": 5, "variableReplacements": [], "useCustomName": false, "marks": 1, "extendBaseMarkingAlgorithm": true, "checkingType": "absdiff", "vsetRange": [0, 1], "showCorrectAnswer": true, "type": "jme", "showPreview": true, "valuegenerators": [{"name": "x", "value": ""}], "checkVariableNames": true, "failureRate": 1, "customName": "", "scripts": {}, "notallowed": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": "

Ensure you don't use brackets in your answer.

"}, "checkingAccuracy": 0.001, "customMarkingAlgorithm": "", "answer": "x^2+{a[0]+b[0]}x+{a[0]*b[0]}"}], "unitTests": [], "type": "gapfill", "prompt": "

$\\simplify{(x+{a[0]})(x+{b[0]})}$ = [[0]]

\n

\n

"}, {"variableReplacementStrategy": "originalfirst", "steps": [{"variableReplacementStrategy": "originalfirst", "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "unitTests": [], "type": "information", "prompt": "

Method 1 (the distributive law)

\n

We expand $\\simplify{(x+{a[1]})(x+{b[1]})}$ one bracket at a time. 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\simplify{(x+{a[1]})(x+{b[1]})}$$=$\n

$\\simplify{x(x+{b[1]})+{a[1]}(x+{b[1]})}$

\n
\n

          (each term in one bracket times the entire other bracket)

\n
$=$$\\simplify{x^2+{b[1]}x+{a[1]}x+{a[1]*b[1]}}$          (use the distributive law on each bracket)
$=$$\\simplify{x^2+{b[1]+a[1]}x+{a[1]*b[1]}}$          (collect like terms)
\n

Method 2 (FOIL)

\n

Multiply the First terms in each bracket, then the Outer terms, then the Inner terms and then the Last terms. Add them all together.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\simplify{(x+{a[1]})(x+{b[1]})}$$=$\n

$\\simplify[basic]{x^2+{b[1]}x+{a[1]}x+{a[1]*b[1]}}$

\n
\n

          (First, Outer, Inner, Last)

\n
$=$$\\simplify{x^2+{b[1]+a[1]}x+{a[1]*b[1]}}$          (collect like terms)
"}], "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "sortAnswers": false, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "stepsPenalty": "1", "gaps": [{"variableReplacementStrategy": "originalfirst", "unitTests": [], "showFeedbackIcon": true, "vsetRangePoints": 5, "variableReplacements": [], "useCustomName": false, "marks": 1, "extendBaseMarkingAlgorithm": true, "checkingType": "absdiff", "vsetRange": [0, 1], "showCorrectAnswer": true, "type": "jme", "showPreview": true, "valuegenerators": [{"name": "x", "value": ""}], "checkVariableNames": true, "failureRate": 1, "customName": "", "scripts": {}, "notallowed": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": "

Ensure you don't use brackets in your answer.

"}, "checkingAccuracy": 0.001, "customMarkingAlgorithm": "", "answer": "x^2+{a[1]+b[1]}x+{a[1]*b[1]}"}], "unitTests": [], "type": "gapfill", "prompt": "

$\\simplify{(x+{a[1]})(x+{b[1]})}$ = [[0]]

\n

\n

"}, {"variableReplacementStrategy": "originalfirst", "steps": [{"variableReplacementStrategy": "originalfirst", "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "unitTests": [], "type": "information", "prompt": "

Method 1 (the distributive law)

\n

We expand $\\simplify{(m+{a[2]})(m+{b[2]})}$ one bracket at a time. 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\simplify{(m+{a[2]})(m+{b[2]})}$$=$\n

$\\simplify{m(m+{b[2]})+{a[2]}(m+{b[2]})}$

\n
\n

          (each term in one bracket times the entire other bracket)

\n
$=$$\\simplify{m^2+{b[2]}m+{a[2]}m+{a[2]*b[2]}}$          (use the distributive law on each bracket)
$=$$\\simplify{m^2+{b[2]+a[2]}m+{a[2]*b[2]}}$           (collect like terms)
\n

Method 2 (FOIL)

\n

Multiply the First terms in each bracket, then the Outer terms, then the Inner terms and then the Last terms. Add them all together.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\simplify{(m+{a[2]})(m+{b[2]})}$$=$\n

$\\simplify[basic]{m^2+{b[2]}m+{a[2]}m+{a[2]*b[2]}}$

\n
\n

          (First, Outer, Inner, Last)

\n
$=$$\\simplify{m^2+{b[2]+a[2]}m+{a[2]*b[2]}}$          (collect like terms)
"}], "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "sortAnswers": false, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "stepsPenalty": "1", "gaps": [{"variableReplacementStrategy": "originalfirst", "unitTests": [], "showFeedbackIcon": true, "vsetRangePoints": 5, "variableReplacements": [], "useCustomName": false, "marks": 1, "extendBaseMarkingAlgorithm": true, "checkingType": "absdiff", "vsetRange": [0, 1], "showCorrectAnswer": true, "type": "jme", "showPreview": true, "valuegenerators": [{"name": "m", "value": ""}], "checkVariableNames": true, "failureRate": 1, "customName": "", "scripts": {}, "notallowed": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": "

Ensure you don't use brackets in your answer.

"}, "checkingAccuracy": 0.001, "customMarkingAlgorithm": "", "answer": "m^2+{a[2]+b[2]}m+{a[2]*b[2]}"}], "unitTests": [], "type": "gapfill", "prompt": "

$\\simplify{(m+{a[2]})(m+{b[2]})}$ = [[0]]

\n

\n

"}, {"variableReplacementStrategy": "originalfirst", "steps": [{"variableReplacementStrategy": "originalfirst", "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "unitTests": [], "type": "information", "prompt": "

Method 1 (the distributive law)

\n

We expand $\\simplify{(t+{a[3]})(t+{b[3]})}$ one bracket at a time. 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\simplify{(t+{a[3]})(t+{b[3]})}$$=$\n

$\\simplify{t(t+{b[3]})+{a[3]}(t+{b[3]})}$

\n
\n

          (each term in one bracket times the entire other bracket)

\n
$=$$\\simplify{t^2+{b[3]}t+{a[3]}t+{a[3]*b[3]}}$          (use the distributive law on each bracket)
$=$$\\simplify{t^2+{b[3]+a[3]}t+{a[3]*b[3]}}$\n

\n

          (collect like terms)

\n
\n

Method 2 (FOIL)

\n

Multiply the First terms in each bracket, then the Outer terms, then the Inner terms and then the Last terms. Add them all together.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\simplify{(t+{a[3]})(t+{b[3]})}$$=$\n

$\\simplify[basic]{t^2+{b[3]}t+{a[3]}t+{a[3]*b[3]}}$

\n
\n

          (First, Outer, Inner, Last)

\n
$=$$\\simplify{t^2+{b[3]+a[3]}t+{a[3]*b[3]}}$          (collect like terms)
"}], "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "sortAnswers": false, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "stepsPenalty": "1", "gaps": [{"variableReplacementStrategy": "originalfirst", "unitTests": [], "showFeedbackIcon": true, "vsetRangePoints": 5, "variableReplacements": [], "useCustomName": false, "marks": 1, "extendBaseMarkingAlgorithm": true, "checkingType": "absdiff", "vsetRange": [0, 1], "showCorrectAnswer": true, "type": "jme", "showPreview": true, "valuegenerators": [{"name": "t", "value": ""}], "checkVariableNames": true, "failureRate": 1, "customName": "", "scripts": {}, "notallowed": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": "

Ensure you don't use brackets in your answer.

"}, "checkingAccuracy": 0.001, "customMarkingAlgorithm": "", "answer": "t^2+{a[3]+b[3]}t+{a[3]*b[3]}"}], "unitTests": [], "type": "gapfill", "prompt": "

$\\simplify{(t+{a[3]})(t+{b[3]})}$ = [[0]]

\n

\n

"}], "functions": {}, "name": "Expanding a binomial product (monic factors)", "ungrouped_variables": ["a", "b"], "preamble": {"js": "", "css": ""}, "variablesTest": {"maxRuns": "127", "condition": ""}, "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": ""}, "extensions": [], "statement": "

Expand and simplify the following.

", "advice": "", "variables": {"b": {"description": "", "definition": "shuffle(-12..12 except 0)[0..4]", "group": "Ungrouped variables", "name": "b", "templateType": "anything"}, "a": {"description": "", "definition": "shuffle(-12..12 except 0)[0..4]", "group": "Ungrouped variables", "name": "a", "templateType": "anything"}}, "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}