// Numbas version: finer_feedback_settings {"name": "Logs: definition and concrete numbers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"rulesets": {}, "variable_groups": [], "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": ""}, "tags": ["logarithms", "logs"], "functions": {}, "name": "Logs: definition and concrete numbers", "ungrouped_variables": ["zero", "one", "two", "small", "tens"], "parts": [{"variableReplacementStrategy": "originalfirst", "distractors": ["", "", "", "", "", ""], "steps": [{"variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "showFeedbackIcon": true, "type": "information", "prompt": "
The definition of a logarithm says if $b$ and $a$ are positive and $b$ is not equal to 1, then $\\log_b(a)=c$ is equivalent to $b^c=a$.
\n\nThis means to determine the value of $\\log_b(a)$, you can think \"$b$ to the what equals $a$\", and that will be your answer.
", "variableReplacements": [], "scripts": {}, "marks": 0}], "maxMarks": 0, "displayColumns": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}, "marks": 0, "displayType": "radiogroup", "stepsPenalty": "1", "matrix": ["1", 0, 0, 0, 0, 0], "choices": ["$b^c=a$
", "$b^a=c$
", "$a^b=c$
", "$a^c=b$
", "$c^a=b$
", "$c^b=a$
"], "type": "1_n_2", "prompt": "The definition of a logarithm says if $b$ and $a$ are positive and $b$ is not equal to 1, then $\\log_b(a)=c$ is equivalent to:
", "minMarks": 0, "shuffleChoices": true}, {"variableReplacementStrategy": "originalfirst", "distractors": ["", "", "", "", "", ""], "steps": [{"variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "showFeedbackIcon": true, "type": "information", "prompt": "The definition of a logarithm says if $b$ and $a$ are positive and $b$ is not equal to 1, then $\\log_b(a)=c$ is equivalent to $b^c=a$.
\n\nThis means to determine the value of $\\log_b(a)$, you can think \"$b$ to the what equals $a$\", and that will be your answer.
", "variableReplacements": [], "scripts": {}, "marks": 0}], "maxMarks": 0, "displayColumns": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}, "marks": 0, "displayType": "radiogroup", "stepsPenalty": "1", "matrix": ["1", 0, 0, 0, 0, 0], "choices": ["$\\log_x (z)=y$
", "$\\log_x (y)=z$
", "$\\log_y (x)=z$
", "$\\log_y (z)=x$
", "$\\log_z (y)=x$
", "$\\log_z (x)=y$
"], "type": "1_n_2", "prompt": "The definition of a logarithm says that if $x$ and $z$ are positive and $x$ is not equal to 1, then $x^y=z$ is equivalent to:
", "minMarks": 0, "shuffleChoices": true}, {"variableReplacementStrategy": "originalfirst", "steps": [{"variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "showFeedbackIcon": true, "type": "information", "prompt": "To determine the value of $\\log_b(a)$, you can think \"$b$ to the what equals $a$\", and that will be your answer.
\n
To determine $\\log_{\\var{zero[0]}}(\\var{zero[0]^zero[1]})$, realise $\\var{zero[0]}^0=\\var{zero[0]^zero[1]}$ and so $\\log_{\\var{zero[0]}}(\\var{zero[0]^zero[1]})=0$.
Using the definition and your times tables determine the following:
\n$\\log_{\\var{zero[0]}}(\\var{zero[0]^zero[1]})$ = [[0]]
", "variableReplacements": [], "gaps": [{"variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "mustBeReduced": false, "showCorrectAnswer": true, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "variableReplacements": [], "minValue": "{zero[1]}", "scripts": {}, "marks": 1, "allowFractions": false, "type": "numberentry", "correctAnswerFraction": false, "maxValue": "{zero[1]}"}], "marks": 0}, {"variableReplacementStrategy": "originalfirst", "steps": [{"variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "showFeedbackIcon": true, "type": "information", "prompt": "To determine the value of $\\log_b(a)$, you can think \"$b$ to the what equals $a$\", and that will be your answer.
\n
To determine $\\log_{\\var{one[0]}}(\\var{one[0]^one[1]})$, realise $\\var{one[0]}^1=\\var{one[0]}$ and so $\\log_{\\var{one[0]}}(\\var{one[0]^one[1]})=1$.
Using the definition and your times tables determine the following:
\n$\\log_{\\var{one[0]}}(\\var{one[0]^one[1]})$ = [[0]]
", "variableReplacements": [], "gaps": [{"variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "mustBeReduced": false, "showCorrectAnswer": true, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "variableReplacements": [], "minValue": "{one[1]}", "scripts": {}, "marks": 1, "allowFractions": false, "type": "numberentry", "correctAnswerFraction": false, "maxValue": "{one[1]}"}], "marks": 0}, {"variableReplacementStrategy": "originalfirst", "steps": [{"variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "showFeedbackIcon": true, "type": "information", "prompt": "To determine the value of $\\log_b(a)$, you can think \"$b$ to the what equals $a$\", and that will be your answer.
\n
To determine $\\log_{\\var{two[0]}}(\\var{two[0]^two[1]})$, realise $\\var{two[0]}^2=\\var{two[0]^2}$ and so $\\log_{\\var{two[0]}}(\\var{two[0]^two[1]})=2$.
Using the definition and your times tables determine the following:
\n$\\log_{\\var{two[0]}}(\\var{two[0]^two[1]})$ = [[0]]
", "variableReplacements": [], "gaps": [{"variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "mustBeReduced": false, "showCorrectAnswer": true, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "variableReplacements": [], "minValue": "{two[1]}", "scripts": {}, "marks": 1, "allowFractions": false, "type": "numberentry", "correctAnswerFraction": false, "maxValue": "{two[1]}"}], "marks": 0}, {"variableReplacementStrategy": "originalfirst", "steps": [{"variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "showFeedbackIcon": true, "type": "information", "prompt": "To determine the value of $\\log_b(a)$, you can think \"$b$ to the what equals $a$\", and that will be your answer.
\n
To determine $\\log_{\\var{small[0]}}(\\var{small[0]^small[1]})$, realise $\\var{small[0]}^\\var{small[1]}=\\var{small[0]^small[1]}$ and so $\\log_{\\var{small[0]}}(\\var{small[0]^small[1]})=\\var{small[1]}$.
Using the definition and your times tables determine the following:
\n$\\log_{\\var{small[0]}}(\\var{small[0]^small[1]})$ = [[0]]
", "variableReplacements": [], "gaps": [{"variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "mustBeReduced": false, "showCorrectAnswer": true, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "variableReplacements": [], "minValue": "{small[1]}", "scripts": {}, "marks": 1, "allowFractions": false, "type": "numberentry", "correctAnswerFraction": false, "maxValue": "{small[1]}"}], "marks": 0}, {"variableReplacementStrategy": "originalfirst", "steps": [{"variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "showFeedbackIcon": true, "type": "information", "prompt": "To determine the value of $\\log_b(a)$, you can think \"$b$ to the what equals $a$\", and that will be your answer.
\n
To determine $\\log_{\\var{tens[0]}}(\\var{tens[0]^tens[1]})$, realise $\\var{tens[0]}^\\var{tens[1]}=\\var{tens[0]^tens[1]}$ and so $\\log_{\\var{tens[0]}}(\\var{tens[0]^tens[1]})=\\var{tens[1]}$.
Recall that $10^n$ is the same as a $1$ with $n$ zeros behind it.
", "variableReplacements": [], "scripts": {}, "marks": 0}], "scripts": {}, "stepsPenalty": "1", "showCorrectAnswer": true, "showFeedbackIcon": true, "type": "gapfill", "prompt": "Using the definition and your times tables determine the following:
\n$\\log_{\\var{tens[0]}}(\\var{tens[0]^tens[1]})$ = [[0]]
", "variableReplacements": [], "gaps": [{"variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "mustBeReduced": false, "showCorrectAnswer": true, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "variableReplacements": [], "minValue": "{tens[1]}", "scripts": {}, "marks": 1, "allowFractions": false, "type": "numberentry", "correctAnswerFraction": false, "maxValue": "{tens[1]}"}], "marks": 0}], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"tens": {"description": "", "definition": "random([10,3],[10,4],[10,5],[10,6])", "templateType": "anything", "name": "tens", "group": "Ungrouped variables"}, "two": {"description": "", "definition": "random(map([b,2],b,list(2..12)))", "templateType": "anything", "name": "two", "group": "Ungrouped variables"}, "small": {"description": "", "definition": "random([2,3],[2,4],[3,3],[3,4],[4,3],[5,3])", "templateType": "anything", "name": "small", "group": "Ungrouped variables"}, "one": {"description": "", "definition": "random(map([b,1],b,list(2..12)))", "templateType": "anything", "name": "one", "group": "Ungrouped variables"}, "zero": {"description": "", "definition": "random(map([b,0],b,list(2..12)))", "templateType": "anything", "name": "zero", "group": "Ungrouped variables"}}, "extensions": [], "type": "question", "preamble": {"js": "", "css": ""}, "advice": "", "statement": "The following should be completed without the use of a calculator.
", "contributors": [{"name": "David Martin", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/130/"}, {"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "David Martin", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/130/"}, {"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}