// Numbas version: finer_feedback_settings {"name": "Standard deviation of a list of numbers with hints", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"metadata": {"description": "
Just showing how to use the stdev function from the stats extension to calculate the standard deviation of a list of numbers.
\nrebelmaths
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "preamble": {"css": "", "js": ""}, "advice": "Standard deviation = $\\sqrt{\\frac{\\Sigma (x-\\text{mean})^2}{n}}$
\nWhat is the mean? Add up the numbers and divide by the number of numbers getting an answer of {mean}.
\nNow, subtract the mean individually from each of the numbers given and square the result.
\nNow add up these results. This is the '$\\Sigma (x-\\text{mean})^2$' part in the formula.
Divide by {x} the number of values. This gives an answer of {var}.
Finally, find the square root to get an answer of {sigma}.
", "rulesets": {}, "extensions": ["stats"], "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "name": "Standard deviation of a list of numbers with hints", "ungrouped_variables": ["data", "sigma", "x", "mean", "var"], "showQuestionGroupNames": false, "functions": {}, "tags": ["rebel", "Rebel", "REBEL", "rebelmaths"], "variablesTest": {"condition": "", "maxRuns": 100}, "variable_groups": [], "variables": {"var": {"name": "var", "definition": "sigma^2", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "x": {"name": "x", "definition": "random(4,5,8)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "data": {"name": "data", "definition": "repeat(random(1..30),x)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "sigma": {"name": "sigma", "definition": "stdev(data)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "mean": {"name": "mean", "definition": "mean(data)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}}, "statement": "Find the Standard Deviation
", "parts": [{"precision": "1", "type": "numberentry", "showPrecisionHint": false, "maxValue": "{sigma}", "strictPrecision": false, "marks": "5", "precisionPartialCredit": 0, "precisionType": "dp", "precisionMessage": "You have not given your answer to the correct number of decimal places.
", "variableReplacementStrategy": "originalfirst", "scripts": {}, "correctAnswerFraction": false, "stepsPenalty": "1", "steps": [{"type": "information", "scripts": {}, "variableReplacementStrategy": "originalfirst", "marks": 0, "prompt": "Standard deviation = $\\sqrt{\\frac{\\Sigma (x-\\text{mean})^2}{n}}$
\nTo find the standard deviation, first find the mean of the list of numbers.
\nWhat is the mean?
\nNow, subtract the mean individually from each of the numbers given and square the result.
\nNow add up these results. This is the '$\\Sigma (x-\\text{mean})^2$' part in the formula.
Divide by $n$ where $n$ is the number of values.
Finally, find the square root.
", "showCorrectAnswer": true, "variableReplacements": []}], "showCorrectAnswer": true, "prompt": "Find the standard deviation of the following list of numbers {data}.
\nGive your answer correct to one decimal place.
", "minValue": "{sigma}", "variableReplacements": [], "allowFractions": false}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}