// Numbas version: exam_results_page_options {"name": "Rearranging Logarithms involving Indices", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"metadata": {"description": "
Use the rule $\\log_a(n^b) = b\\log_a(n)$ to rearrange some expressions.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "preamble": {"css": "", "js": ""}, "advice": "i)
\nWe need to use the rule
\n\\[k\\log_a(x)=\\log_a(x^k)\\text{.}\\]
\nSubsituting in our values for $x$ and $k$ gives
\n\\[\\var{x1[3]}\\log_a(\\var{z1[0]})=\\log_a(\\var{z1[0]^x1[3]})\\text{.}\\]
\nii)
\nWe need to use the rule
\n\\[k\\log_a(x)=\\log_a(x^k)\\text{.}\\]
\nSubsituting in our values for $x$ and $k$ gives
\n\\[\\var{x1[1]}\\log_a(\\var{z1[1]})=\\log_a(\\var{z1[1]^x1[1]})\\text{.}\\]
\ni)
\nThe rule for indices in logarithms also works the other way around,
\n\\[\\log_a(x^k)=k\\log_a(x)\\text{.}\\]
\nWe can use this to rearrange our expression by substituting in values for $x$ and $k$.
\n\\[\\begin{align}
\\log_a(\\var{x1[3]^z1[5]})&=k\\log_a(\\var{x1[3]})\\\\
\\var{x1[3]^z1[5]}&=\\var{x1[3]}^k\\\\
\\var{x1[3]^z1[5]}&=\\var{x1[3]}^\\var{z1[5]}\\\\
k&=\\var{z1[5]}\\\\
\\log_a(\\var{x1[3]^z1[5]})&=\\var{z1[5]}\\log_a(\\var{x1[3]})
\\end{align}\\]
ii)
\nAs with i) we can use the rule
\n\\[\\log_a(x^k)=k\\log_a(x)\\text{.}\\]
\nWe can use this to rearrange our expression by substituting in values for $x$ and $k$.
\n\\[\\begin{align}
\\log_a(\\var{x1[5]^z1[6]})&=k\\log_a(\\var{x1[5]})\\\\
\\var{x1[5]^z1[6]}&=\\var{x1[5]}^k\\\\
\\var{x1[5]^z1[6]}&=\\var{x1[5]}^\\var{z1[6]}\\\\
k&=\\var{z1[6]}\\\\
\\log_a(\\var{x1[5]^z1[6]})&=\\var{z1[6]}\\log_a(\\var{x1[5]})
\\end{align}\\]
i)
\nFrom the structure of this question we can tell that the answer can be written in the form $k\\log_a(\\var{x1[3]})$, meaning all of the values in the expression
\n\\[\\log_a(\\var{x1[3]^z1[2]})+\\log_a(\\var{x1[3]})\\]
\ncan be written in the form $k\\log_a(\\var{x1[3]})$.
\nIf we look at each log individually we can make sure they all take this form.
\n\\[\\begin{align}
\\log_a(\\var{x1[3]^z1[2]})&=k\\log_a(\\var{x1[3]})\\\\
\\var{x1[3]^z1[2]}&=\\var{x1[3]}^k\\\\
\\var{x1[3]^z1[2]}&=\\var{x1[3]}^\\var{z1[2]}\\\\
k&=\\var{z1[2]}\\\\
\\log_a(\\var{x1[3]^z1[2]})&=\\var{z1[2]}\\log_a(\\var{x1[3]})
\\end{align}\\]
We can now write our expression as
\n\\[\\begin{align}
\\log_a(\\var{x1[3]^z1[2]})+\\log_a(\\var{x1[3]})&=\\var{z1[2]}\\log_a(\\var{x1[3]})+\\log_a(\\var{x1[3]})\\\\
&=\\var{z1[2]+1}\\log_a(\\var{x1[3]})\\text{.}
\\end{align}\\]
ii)
\nFrom this question we know our answer is written in the form $k\\log_a(\\var{x1[4]})$, meaning all of the values in the expression
\n\\[\\log_a(\\var{x1[4]^z1[1]})+\\log_a(\\var{x1[4]^z1[0]})\\]
\ncan be written in the form $k\\log_a(\\var{x1[4]})$.
\nIf we look at each log individually we can make sure they all take this form.
\n\\[\\begin{align}
\\log_a(\\var{x1[4]^z1[1]})&=k\\log_a(\\var{x1[4]})\\\\
\\var{x1[4]^z1[1]}&=\\var{x1[4]}^k\\\\
\\var{x1[4]^z1[1]}&=\\var{x1[4]}^\\var{z1[1]}\\\\
k&=\\var{z1[1]}\\\\
\\log_a(\\var{x1[4]^z1[1]})&=\\var{z1[1]}\\log_a(\\var{x1[4]})
\\end{align}\\]
\\[\\begin{align}
\\log_a(\\var{x1[4]^z1[0]})&=k\\log_a(\\var{x1[4]})\\\\
\\var{x1[4]^z1[0]}&=\\var{x1[4]}^k\\\\
\\var{x1[4]^z1[0]}&=\\var{x1[4]}^\\var{z1[0]}\\\\
k&=\\var{z1[0]}\\\\
\\log_a(\\var{x1[4]^z1[0]})&=\\var{z1[0]}\\log_a(\\var{x1[4]})
\\end{align}\\]
We can now write our expression as
\n\\[\\begin{align}
\\log_a(\\var{x1[4]^z1[1]})+\\log_a(\\var{x1[4]^z1[0]})&=\\var{z1[1]}\\log_a(\\var{x1[4]})+\\var{z1[0]}\\log_a(\\var{x1[4]})\\\\
&=\\var{z1[1]+z1[0]}\\log_a(\\var{x1[4]})\\text{.}
\\end{align}\\]
iii)
\nFrom this question we know our answer is written in the form $k\\log_a(\\var{x1[5]})$, meaning all of the values in the expression
\n\\[\\log_a(\\var{x1[5]^z1[1]})+\\log_a(\\var{x1[5]^z1[2]})-\\log_a(\\var{x1[5]^z1[4]})\\]
\ncan be written in the form $k\\log_a(\\var{x1[5]})$.
\nIf we look at each log individually we can make sure they all take this form.
\n\\[\\begin{align}
\\log_a(\\var{x1[5]^z1[1]})&=k\\log_a(\\var{x1[5]})\\\\
\\var{x1[5]^z1[1]}&=\\var{x1[5]}^k\\\\
\\var{x1[5]^z1[1]}&=\\var{x1[5]}^\\var{z1[1]}\\\\
k&=\\var{z1[1]}\\\\
\\log_a(\\var{x1[5]^z1[1]})&=\\var{z1[1]}\\log_a(\\var{x1[5]})
\\end{align}\\]
\\[\\begin{align}
\\log_a(\\var{x1[5]^z1[2]})&=k\\log_a(\\var{x1[5]})\\\\
\\var{x1[5]^z1[2]}&=\\var{x1[5]}^k\\\\
\\var{x1[5]^z1[2]}&=\\var{x1[5]}^\\var{z1[2]}\\\\
k&=\\var{z1[2]}\\\\
\\log_a(\\var{x1[5]^z1[2]})&=\\var{z1[2]}\\log_a(\\var{x1[5]})
\\end{align}\\]
\\[\\begin{align}
\\log_a(\\var{x1[5]^z1[4]})&=k\\log_a(\\var{x1[5]})\\\\
\\var{x1[5]^z1[4]}&=\\var{x1[5]}^k\\\\
\\var{x1[5]^z1[4]}&=\\var{x1[5]}^\\var{z1[4]}\\\\
k&=\\var{z1[4]}\\\\
\\log_a(\\var{x1[5]^z1[4]})&=\\var{z1[4]}\\log_a(\\var{x1[5]})
\\end{align}\\]
We can now write our expression as
\n\\[\\begin{align}
\\log_a(\\var{x1[5]^z1[1]})+\\log_a(\\var{x1[5]^z1[2]})-\\log_a(\\var{x1[5]^z1[4]})&=\\var{z1[1]}\\log_a(\\var{x1[5]})+\\var{z1[0]}\\log_a(\\var{x1[5]})-\\var{z1[4]}\\log_a(\\var{x1[5]})\\\\
&=\\var{z1[1]+z1[2]-z1[4]}\\log_a(\\var{x1[5]})\\text{.}
\\end{align}\\]
When logarithms involve indices we can rearrange them using the rule,
\n\\[\\log_a(x^y)=y\\log_a(x)\\text{.}\\]
\nThis can also be useful for removing integers from the front of logarithms.
", "parts": [{"type": "gapfill", "scripts": {}, "variableReplacementStrategy": "originalfirst", "marks": 0, "showFeedbackIcon": true, "showCorrectAnswer": true, "gaps": [{"showFeedbackIcon": true, "type": "jme", "checkingaccuracy": 0.001, "checkvariablenames": false, "answer": "{x1[3]}^{z1[0]}", "marks": 1, "showpreview": true, "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "checkingtype": "absdiff", "scripts": {}, "vsetrange": [0, 1], "showCorrectAnswer": true, "vsetrangepoints": 5, "variableReplacements": []}, {"showFeedbackIcon": true, "type": "jme", "checkingaccuracy": 0.001, "checkvariablenames": false, "answer": "{x1[1]}^{z1[1]}", "marks": 1, "showpreview": true, "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "checkingtype": "absdiff", "scripts": {}, "vsetrange": [0, 1], "showCorrectAnswer": true, "vsetrangepoints": 5, "variableReplacements": []}], "prompt": "Simplify the following expressions.
\ni)
\n$\\var{z1[0]}\\log_a(\\var{x1[3]})=\\log_a($ [[0]]$)$
\nii)
\n$\\var{z1[1]}\\log_a(\\var{x1[1]})=\\log_a($ [[1]]$)$
", "variableReplacements": []}, {"type": "gapfill", "scripts": {}, "variableReplacementStrategy": "originalfirst", "marks": 0, "showFeedbackIcon": true, "showCorrectAnswer": true, "gaps": [{"showFeedbackIcon": true, "type": "jme", "checkingaccuracy": 0.001, "checkvariablenames": false, "answer": "{z1[5]}", "marks": 1, "showpreview": true, "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "checkingtype": "absdiff", "scripts": {}, "vsetrange": [0, 1], "showCorrectAnswer": true, "vsetrangepoints": 5, "variableReplacements": []}, {"showFeedbackIcon": true, "type": "jme", "checkingaccuracy": 0.001, "checkvariablenames": false, "answer": "{z1[6]}", "marks": 1, "showpreview": true, "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "checkingtype": "absdiff", "scripts": {}, "vsetrange": [0, 1], "showCorrectAnswer": true, "vsetrangepoints": 5, "variableReplacements": []}], "prompt": "Simplify the following expressions.
\ni)
\n$\\log_a(\\var{x1[3]^z1[5]})=$ [[0]] $\\log_a(\\var{x1[3]})$
\nii)
\n$\\log_a(\\var{x1[5]^z1[6]})=$ [[1]] $\\log_a(\\var{x1[5]})$
", "variableReplacements": []}, {"type": "gapfill", "scripts": {}, "variableReplacementStrategy": "originalfirst", "marks": 0, "showFeedbackIcon": true, "showCorrectAnswer": true, "gaps": [{"showFeedbackIcon": true, "type": "jme", "checkingaccuracy": 0.001, "checkvariablenames": false, "answer": "{z1[2]+1}", "marks": 1, "showpreview": true, "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "checkingtype": "absdiff", "scripts": {}, "vsetrange": [0, 1], "showCorrectAnswer": true, "vsetrangepoints": 5, "variableReplacements": []}, {"showFeedbackIcon": true, "type": "jme", "checkingaccuracy": 0.001, "checkvariablenames": false, "answer": "{z1[1]+z1[0]}", "marks": 1, "showpreview": true, "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "checkingtype": "absdiff", "scripts": {}, "vsetrange": [0, 1], "showCorrectAnswer": true, "vsetrangepoints": 5, "variableReplacements": []}, {"showFeedbackIcon": true, "type": "jme", "checkingaccuracy": 0.001, "checkvariablenames": false, "answer": "{z1[1]+z1[2]-z1[4]}", "marks": 1, "showpreview": true, "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "checkingtype": "absdiff", "scripts": {}, "vsetrange": [0, 1], "showCorrectAnswer": true, "vsetrangepoints": 5, "variableReplacements": []}], "prompt": "i)
\n$\\log_a(\\var{x1[3]^z1[2]})+\\log_a(\\var{x1[3]})=$ [[0]]$\\log_a(\\var{x1[3]})$
\nii)
\n$\\log_a(\\var{x1[4]^z1[1]})+\\log_a(\\var{x1[4]^z1[0]})=$ [[1]]$\\log_a(\\var{x1[4]})$
\niii)
\n$\\log_a(\\var{x1[5]^z1[1]})+\\log_a(\\var{x1[5]^z1[2]})-\\log_a(\\var{x1[5]^z1[4]})=$ [[2]]$\\log_a(\\var{x1[5]})$
", "variableReplacements": []}], "contributors": [{"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}, {"name": "Ida Landg\u00e4rds", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2336/"}]}]}], "contributors": [{"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}, {"name": "Ida Landg\u00e4rds", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2336/"}]}