// Numbas version: finer_feedback_settings {"name": "Small sample t-test on sample mean", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"metadata": {"licence": "Creative Commons Attribution-NonCommercial 4.0 International", "description": ""}, "type": "question", "preamble": {"css": "", "js": ""}, "advice": "
\n\\(H_0:\\) The mean \\(=\\var{mu1}\\).
\n\\(H_1:\\) The mean \\(\\ne\\var{mu1}\\).
\nThis is a two-sided test.
\nGiven a sample of size \\(n\\) recall:
\nthe formula for the sample mean: \\(\\overline{x}=\\frac{\\sum {x}}{n}=\\var{sample_mean_2}\\)
\nthe formula for the sample standard deviation: \\(s=\\sqrt{\\frac{\\sum{(x-\\overline{x})^2}}{n-1}}=\\var{sample_stdev_2}\\)
\nthe formula for the t-statistic: \\(t=\\frac{\\overline{x}-\\mu}{\\frac{s}{\\sqrt{n}}}=\\frac{\\var{sample_mean_2}-\\var{mu1}}{\\frac{\\var{sample_stdev_2}}{\\sqrt{\\var{sample_size}}}}=\\var{test_statistic}\\)
\nThe t-table values will be for a two-tailed test and will have \\(n-1=13\\) degrees of freedom looking this up gives:
\n\\[\\begin{array}{r|rrrr}&0.10&0.05&0.01\\\\\\hline13&\\pm\\var{t90}&\\pm\\var{t95}&\\pm\\var{t99}\\end{array}\\]
\nCompare the test statistic with the t-table values and choose your conclusion.
", "rulesets": {}, "extensions": ["stats"], "name": "Small sample t-test on sample mean", "ungrouped_variables": ["sample_size", "r1", "sample_mean_2", "sample_stdev_2", "mu1", "sigm1", "test_statistic", "t95", "scenario", "decision_matrix", "t99", "t90", "t999"], "functions": {}, "tags": [], "variablesTest": {"condition": "", "maxRuns": 100}, "variable_groups": [], "variables": {"t90": {"name": "t90", "group": "Ungrouped variables", "definition": "1.771", "description": "", "templateType": "number"}, "sample_stdev_2": {"name": "sample_stdev_2", "group": "Ungrouped variables", "definition": "precround(sqrt(14*stdev(r1)^2/13),3)", "description": "", "templateType": "anything"}, "scenario": {"name": "scenario", "group": "Ungrouped variables", "definition": "sum(map(abs(test_statistic)The following set of \\(\\var{sample_size}\\) numbers is believed to be drawn from a normal population:
\n{r1[0]} | \n{r1[1]} | \n{r1[2]} | \n{r1[3]} | \n{r1[4]} | \n{r1[5]} | \n{r1[6]} | \n{r1[7]} | \n{r1[8]} | \n{r1[9]} | \n{r1[10]} | \n{r1[11]} | \n{r1[12]} | \n{r1[13]} | \n
We want to test the hypothesis that the population mean = \\(\\var{mu1}\\).
\n", "parts": [{"type": "gapfill", "scripts": {}, "variableReplacementStrategy": "originalfirst", "marks": 0, "prompt": "Input the sample mean: [[0]]
\nInput the sample standard deviation:[[1]]
\nEnter the value for the test statistic: t = [[2]]
\n", "showCorrectAnswer": true, "gaps": [{"precision": "2", "type": "numberentry", "showPrecisionHint": true, "maxValue": "sample_mean_2", "strictPrecision": false, "correctAnswerStyle": "plain", "precisionPartialCredit": 0, "precisionType": "dp", "correctAnswerFraction": false, "mustBeReducedPC": 0, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "scripts": {}, "mustBeReduced": false, "showFeedbackIcon": true, "marks": 1, "minValue": "sample_mean_2", "notationStyles": ["plain", "en", "si-en"], "precisionMessage": "You have not given your answer to the correct precision.", "variableReplacements": [], "allowFractions": false}, {"precision": "2", "type": "numberentry", "showPrecisionHint": true, "maxValue": "sample_stdev_2", "strictPrecision": false, "correctAnswerStyle": "plain", "precisionPartialCredit": 0, "precisionType": "dp", "correctAnswerFraction": false, "mustBeReducedPC": 0, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "scripts": {}, "mustBeReduced": false, "showFeedbackIcon": true, "marks": 1, "minValue": "sample_stdev_2", "notationStyles": ["plain", "en", "si-en"], "precisionMessage": "You have not given your answer to the correct precision.", "variableReplacements": [], "allowFractions": false}, {"precision": "2", "type": "numberentry", "showPrecisionHint": true, "maxValue": "(sample_mean_2-mu1)/(sample_stdev_2/sqrt(sample_size))", "strictPrecision": false, "correctAnswerStyle": "plain", "precisionPartialCredit": 0, "precisionType": "dp", "correctAnswerFraction": false, "mustBeReducedPC": 0, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "scripts": {}, "mustBeReduced": false, "showFeedbackIcon": true, "marks": 1, "minValue": "(sample_mean_2-mu1)/(sample_stdev_2/sqrt(sample_size))", "notationStyles": ["plain", "en", "si-en"], "precisionMessage": "You have not given your answer to the correct precision.", "variableReplacements": [{"variable": "sample_mean_2", "part": "p0g0", "must_go_first": true}, {"variable": "sample_stdev_2", "part": "p0g1", "must_go_first": true}], "allowFractions": false}], "showFeedbackIcon": true, "variableReplacements": []}, {"type": "1_n_2", "maxMarks": "2", "variableReplacementStrategy": "originalfirst", "marks": 0, "showFeedbackIcon": true, "displayColumns": "1", "minMarks": "2", "choices": ["Reject the Null Hypothesis and conclude that mean value is not \\(\\var{mu1}\\)
", "Reject the Null Hypothesis at the 5% significance level but accept the Null Hypothesis at the 1% significance level and conclude that mean value is \\(\\var{mu1}\\).
", "Reject the Null Hypothesis at the 10% significance level but accept the Null Hypothesis at the 5% significance level and conclude that mean value is \\(\\var{mu1}\\).
", "Accept the Null Hypothesis at the 10% significance level and conclude that mean value is \\(\\var{mu1}\\) .
"], "shuffleChoices": false, "scripts": {}, "matrix": "decision_matrix", "displayType": "radiogroup", "showCorrectAnswer": true, "prompt": "Having compared your test statistic with the table values for a two-tailed t-test with 13 degrees of freedom, select one of the following conclusions that best describes your conclusion.
", "variableReplacements": [{"variable": "test_statistic", "part": "p0g2", "must_go_first": false}]}], "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}