// Numbas version: exam_results_page_options {"name": "Sequences: Limit Laws", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Sequences: Limit Laws", "variable_groups": [], "metadata": {"description": "

Basic question on limit laws and the squeeze theorem for sequences.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "ungrouped_variables": ["A", "B", "C", "D", "L", "f", "g", "list", "n0", "h", "j"], "functions": {}, "extensions": [], "variablesTest": {"condition": "", "maxRuns": 100}, "type": "question", "statement": "

The following questions deal with the limit laws of sequences.

\n

", "preamble": {"js": "", "css": ""}, "tags": [], "parts": [{"showFeedbackIcon": true, "variableReplacements": [], "marks": 0, "scripts": {}, "prompt": "

Given that

\n

$\\displaystyle\\lim_{n\\rightarrow\\infty}a_n=\\var{A}$, 
$\\displaystyle\\lim_{n\\rightarrow\\infty}b_n=\\var{B}$, 
$\\displaystyle\\lim_{n\\rightarrow\\infty}c_n=\\var{C}$,
$\\displaystyle\\lim_{n\\rightarrow\\infty}d_n=\\var{D}$ and
$\\displaystyle\\lim_{n\\rightarrow\\infty}l_n=\\var{L}$.

\n

Determine the following limit:

\n

$\\displaystyle\\lim_{n\\rightarrow\\infty} \\left(\\frac{a_n+\\var{f}b_n-c_nd_n}{l_n+\\var{g}}\\right)=$ [[0]]

", "gaps": [{"correctAnswerStyle": "plain", "scripts": {}, "maxValue": "(A+f*B-C*D)/(L+g)", "mustBeReducedPC": 0, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "numberentry", "showFeedbackIcon": true, "notationStyles": ["plain", "en", "si-en"], "marks": 1, "allowFractions": true, "minValue": "(A+f*B-C*D)/(L+g)", "correctAnswerFraction": true, "variableReplacements": [], "mustBeReduced": false}], "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill"}, {"showFeedbackIcon": true, "variableReplacements": [], "marks": 0, "scripts": {}, "prompt": "

Suppose $x_n\\le y_n \\le z_n$ for all $n\\ge \\var{n0}$, and $\\displaystyle\\lim_{n\\rightarrow\\infty}x_n=\\lim_{n\\rightarrow\\infty}z_n=\\var{h}$. Then what can be said about the sequence $\\{y_n\\}$?

\n

[[0]]

", "gaps": [{"choices": ["

It diverges.

", "

It converges to some unknown number.

", "

There is insufficient information to tell if it converges or diverges.

", "

It converges to {h}.

"], "maxMarks": 0, "scripts": {}, "minMarks": 0, "displayType": "dropdownlist", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "1_n_2", "shuffleChoices": true, "showFeedbackIcon": true, "marks": 0, "displayColumns": 0, "matrix": [0, 0, 0, "1"], "distractors": ["", "", "", ""], "variableReplacements": []}], "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill"}, {"showFeedbackIcon": true, "variableReplacements": [], "marks": 0, "scripts": {}, "prompt": "

Suppose $\\lim_{x\\rightarrow\\infty}f(x)=\\var{j}$ and $f(n)=a_n$ when $n$ is an integer. Then what can be said about the sequence $\\{a_n\\}$?

\n

[[0]]

", "gaps": [{"choices": ["

It diverges.

", "

It converges to some unknown number.

", "

There is insufficient information to tell if it converges or diverges.

", "

It converges to {j}.

", "

It converges to {j+0.5}.

"], "maxMarks": 0, "scripts": {}, "minMarks": 0, "displayType": "dropdownlist", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "1_n_2", "shuffleChoices": true, "showFeedbackIcon": true, "marks": 0, "displayColumns": 0, "matrix": [0, 0, 0, "1", 0], "distractors": ["", "", "", "", ""], "variableReplacements": []}], "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill"}], "rulesets": {}, "advice": "

a) 

\n

The following steps through the application of the limit laws to our question

\n

$\\displaystyle\\begin{align}\\lim_{n\\rightarrow\\infty} \\left(\\frac{a_n+\\var{f}b_n-c_nd_n}{l_n+\\var{g}}\\right)&=\\frac{\\lim_{n\\rightarrow\\infty}\\left(a_n+\\var{f}b_n-c_nd_n\\right)}{\\lim_{n\\rightarrow\\infty}\\left(l_n+\\var{g}\\right)}\\\\&=\\frac{\\lim_{n\\rightarrow\\infty}(a_n)+\\lim_{n\\rightarrow\\infty}(\\var{f}b_n)-\\lim_{n\\rightarrow\\infty}(c_nd_n)}{\\lim_{n\\rightarrow\\infty}(l_n)+\\lim_{n\\rightarrow\\infty}(\\var{g})}\\\\&=\\frac{\\lim_{n\\rightarrow\\infty}(a_n)+\\var{f}\\lim_{n\\rightarrow\\infty}(b_n)-\\lim_{n\\rightarrow\\infty}(c_n)\\lim_{n\\rightarrow\\infty}(d_n)}{\\lim_{n\\rightarrow\\infty}(l_n)+\\lim_{n\\rightarrow\\infty}(\\var{g})}\\\\&=\\frac{\\var{A}+\\var{f}(\\var{B})-(\\var{C})(\\var{D})}{\\var{L}+\\var{g}}\\\\&=\\simplify[fractionNumbers,simplifyFractions,unitDenominator]{{A+f*B-C*D}/{L+g}}\\end{align}$

\n

\n

b) 

\n

The middle sequence, $\\{y_n\\}$, is squeezed by the sequence below, $\\{x_n\\}$, and the sequence above, $\\{z_n\\}$, which both converge to the same limit, therefore $\\{y_n\\}$ must also converge to the same limit. This is known as the squeeze theorem (for sequences).

\n

\n

c) 

\n

The only difference between a function converging and a sequence converging is that the sequence is only defined for integers. So if the value of $a_n$ is the same as $f(n)$ and $f(x)$ converges to $\\var{j}$, then it stands to reason that the sequence $\\{a_n\\}$ would also converge to $\\var{j}$.

", "variables": {"j": {"templateType": "anything", "description": "", "definition": "list[8]+0.5", "group": "Ungrouped variables", "name": "j"}, "h": {"templateType": "anything", "description": "", "definition": "list[7]", "group": "Ungrouped variables", "name": "h"}, "D": {"templateType": "anything", "description": "", "definition": "list[3]", "group": "Ungrouped variables", "name": "D"}, "g": {"templateType": "anything", "description": "", "definition": "abs(list[6])", "group": "Ungrouped variables", "name": "g"}, "list": {"templateType": "anything", "description": "", "definition": "shuffle(-12..12 except 0)", "group": "Ungrouped variables", "name": "list"}, "C": {"templateType": "anything", "description": "", "definition": "list[2]", "group": "Ungrouped variables", "name": "C"}, "B": {"templateType": "anything", "description": "", "definition": "list[1]", "group": "Ungrouped variables", "name": "B"}, "f": {"templateType": "anything", "description": "", "definition": "abs(list[5])", "group": "Ungrouped variables", "name": "f"}, "A": {"templateType": "anything", "description": "", "definition": "list[0]", "group": "Ungrouped variables", "name": "A"}, "L": {"templateType": "anything", "description": "", "definition": "list[4]", "group": "Ungrouped variables", "name": "L"}, "n0": {"templateType": "anything", "description": "", "definition": "random(10..1000#10)", "group": "Ungrouped variables", "name": "n0"}}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}