// Numbas version: exam_results_page_options {"name": "Geometric series: sigma notation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "preamble": {"js": "", "css": ""}, "ungrouped_variables": ["a", "r", "limitingsum", "n", "sum", "start", "stop"], "functions": {}, "extensions": [], "variablesTest": {"condition": "", "maxRuns": 100}, "metadata": {"description": "

Determine a finite sum and a limiting sum of a geometric series written using sigma notation. I'm not sure how to eliminate rounding errors...

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

A series is given by \\[\\sum_{k=\\var{start}}^{\\var{stop}}\\var{a}\\left(\\var[fractionNumbers]{r}\\right)^k\\] 

\n

\\[\\sum_{k=\\var{start}}^{\\var{stop}}\\var{a}\\times \\var{r}^k\\]

", "variables": {"limitingsum": {"templateType": "anything", "description": "", "definition": "if(abs(r)<1,a/(1-r),'N/A')", "group": "Ungrouped variables", "name": "limitingsum"}, "sum": {"templateType": "anything", "description": "", "definition": "if(r=1,a*(n+1),a*r^start*(1-r^(n+1))/(1-r))", "group": "Ungrouped variables", "name": "sum"}, "n": {"templateType": "anything", "description": "", "definition": "random(9..15)", "group": "Ungrouped variables", "name": "n"}, "r": {"templateType": "anything", "description": "", "definition": "random([1/3,1/4,1/6,-1/3,-1/4,-1/6,2/3,-2/3,3/4,-3/4,-2,-1.9,-1.8,-1.7,-1.6,-1.5,-1.4,-1.3,-1.2,-1.1,-1,-0.9,-0.8,-0.7,-0.6,-0.5,-0.4,-0.3,-0.2,-0.1,-2,2,1.9,1.8,1.7,1.6,1.5,1.4,1.3,1.2,1.1,1,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1])", "group": "Ungrouped variables", "name": "r"}, "a": {"templateType": "anything", "description": "", "definition": "random(-20..20 except 0)", "group": "Ungrouped variables", "name": "a"}, "start": {"templateType": "anything", "description": "", "definition": "random(0..3)", "group": "Ungrouped variables", "name": "start"}, "stop": {"templateType": "anything", "description": "", "definition": "start+n", "group": "Ungrouped variables", "name": "stop"}}, "tags": [], "parts": [{"customName": "", "customMarkingAlgorithm": "", "sortAnswers": false, "scripts": {}, "prompt": "

What is the first term in this series? [[0]]

", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "showFeedbackIcon": true, "marks": 0, "unitTests": [], "useCustomName": false, "gaps": [{"customName": "", "customMarkingAlgorithm": "", "scripts": {}, "failureRate": 1, "answer": "{a*r^(start)}", "valuegenerators": [], "checkingType": "absdiff", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "jme", "vsetRange": [0, 1], "showFeedbackIcon": true, "marks": 1, "vsetRangePoints": 5, "checkVariableNames": false, "unitTests": [], "showPreview": true, "useCustomName": false, "variableReplacements": [], "checkingAccuracy": "0.000001"}], "variableReplacements": []}, {"customName": "", "customMarkingAlgorithm": "", "sortAnswers": false, "scripts": {}, "prompt": "

What does this series sum to? [[0]]

\n

Note: It is likely your calculator will give you an answer that is not accurate enough. If this is the case, you can input your expression such as $\\frac{2\\times3^4(1-1.7^{10})}{-0.7}$ using the syntax 2*3^4*(1-1.7^10)/(-0.7)

", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "showFeedbackIcon": true, "marks": 0, "unitTests": [], "useCustomName": false, "gaps": [{"customName": "", "customMarkingAlgorithm": "", "scripts": {}, "failureRate": 1, "answer": "{sum}", "valuegenerators": [], "checkingType": "absdiff", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "jme", "vsetRange": [0, 1], "showFeedbackIcon": true, "marks": 1, "vsetRangePoints": 5, "checkVariableNames": false, "unitTests": [], "showPreview": true, "useCustomName": false, "variableReplacements": [], "checkingAccuracy": "0.000001"}], "variableReplacements": []}, {"customName": "", "customMarkingAlgorithm": "", "sortAnswers": false, "scripts": {"constructor": {"order": "after", "script": "// override the default 'submit' method for the part\n// we only want to submit gap 1 if the answer to gap 0 is \"converge\"\nthis.submit = Numbas.util.extend(function() {\n this.gaps[0].submit();\n if(this.gaps[0].converge) {\n this.gaps[1].submit();\n } else {\n this.gaps[1].answered = true;\n }\n},Part.prototype.submit);"}, "mark": {"order": "instead", "script": "var gaps = this.gaps;\n// if the student said \"yes\" to gap 0, then mark their sum\nif(gaps[0].yes) {\n this.__proto__.mark.apply(this);\n// otherwise, work out the credit based on the amounts awarded for the first three gaps\n} else {\n this.setCredit((gaps[0].credit));\n}"}}, "prompt": "

Does the infinite series $\\sum_{k=\\var{start}}^{\\infty}\\var{a}\\left(\\var[fractionNumbers]{r}\\right)^k$  $\\sum_{k=\\var{start}}^{\\infty}\\var{a}\\times \\var{r}^k$ converge or diverge? [[0]]

\n

\n
\n

What does it converge to? [[1]]

\n
", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "showFeedbackIcon": true, "marks": 0, "unitTests": [], "useCustomName": false, "gaps": [{"customName": "", "customMarkingAlgorithm": "", "showCellAnswerState": true, "maxMarks": 0, "scripts": {"mark": {"order": "instead", "script": "// apply the normal marking algorithm for this part\nthis.__proto__.mark.apply(this);\n// store whether the student said \"yes\" in an attribute that's easier to access\nthis.converge = this.ticks[0][0];"}}, "minMarks": 0, "matrix": ["if(abs(r)<1,1,0)", "if(abs(r)<1,0,1)"], "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "1_n_2", "shuffleChoices": false, "showFeedbackIcon": true, "marks": 0, "displayType": "radiogroup", "unitTests": [], "distractors": ["", ""], "displayColumns": 0, "useCustomName": false, "variableReplacements": [], "choices": ["

converge

", "

diverge

"]}, {"customName": "", "customMarkingAlgorithm": "", "failureRate": 1, "checkingType": "absdiff", "showCorrectAnswer": true, "checkVariableNames": false, "vsetRange": [0, 1], "showFeedbackIcon": true, "vsetRangePoints": 5, "checkingAccuracy": "0.000001", "scripts": {}, "answer": "{limitingsum}", "valuegenerators": [], "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "type": "jme", "answerSimplification": "fractionNumbers", "marks": 1, "unitTests": [], "showPreview": true, "useCustomName": false, "variableReplacements": []}], "variableReplacements": []}], "rulesets": {}, "advice": "

a)

\n

$\\displaystyle\\sum_{k=\\var{start}}^{\\var{stop}}\\var{a}\\left(\\var[fractionNumbers]{r}\\right)^k$ $\\displaystyle\\sum_{k=\\var{start}}^{\\var{stop}}\\var{a}\\times \\var{r}^k$ is a nice way of writing 

\n

\\[\\var{a}\\left(\\var[fractionNumbers]{r}\\right)^\\var{start}+\\var{a}\\left(\\var[fractionNumbers]{r}\\right)^\\var{start+1}+\\var{a}\\left(\\var[fractionNumbers]{r}\\right)^\\var{start+2}+\\ldots+\\var{a}\\left(\\var[fractionNumbers]{r}\\right)^\\var{stop}\\] \\[\\var{a}\\times \\var{r}^\\var{start}+\\var{a}\\times \\var{r}^\\var{start+1}+\\var{a}\\times \\var{r}^\\var{start+2}+\\dots+\\var{a}\\times \\var{r}^\\var{stop}\\]

\n

 Therefore the first term is $\\simplify[fractionNumbers]{{a*r^start}}$.

\n

\n

b)

\n

Notice each term in the series is just the last term multiplied by $\\var[fractionNumbers]{r}$ that is, the common ratio between consecutive terms is $\\var[fractionNumbers]{r}$. Therefore, the series is a geometric series and we can determine its sum using the formula \\[S_n=\\frac{a(1-r^n)}{1-r}\\] where $a$ is the first term, $r$ is the common ratio and $n$ is the number of terms in the sum.

\n

In our case we have $a=\\simplify[fractionNumbers]{{a*r^start}}$, $r=\\var[fractionNumbers]{{r}}$, and $n=\\var{n+1}$, so the sum is \\[\\begin{align}S_{\\var{n+1}}&=\\frac{\\simplify[fractionNumbers]{{a*r^start}}\\left(1-\\left(\\var[fractionNumbers]{{r}}\\right)^\\var{n+1}\\right)}{1-\\left(\\var[fractionNumbers]{{r}}\\right)}\\\\&=\\frac{\\simplify[fractionNumbers]{{a*r^start}}\\left(1-\\left(\\var[fractionNumbers]{{r}}\\right)^\\var{n+1}\\right)}{\\var[fractionNumbers]{1-r}}\\\\&=\\simplify[fractionNumbers,simplifyFractions]{{(a*r^start)/(1-r)}}\\left(1-\\left(\\var[fractionNumbers]{{r}}\\right)^\\var{n+1}\\right)\\end{align}\\]

\n

Notice each term in the series is actually the same! So we just have $\\var{n+1}$ lots of $\\var{a}$ and so our sum is simply $\\var{a*(n+1)}$.

\n

Since $r$ is negative and $n$ is odd, this is the same as $\\simplify[fractionNumbers,simplifyFractions]{{(a*r^start)/(1-r)}}\\left(1+\\left(\\var[fractionNumbers]{-r}\\right)^\\var{n+1}\\right)$$=\\var[fractionNumbers]{sum}$.

\n

Since $r$ is negative and $n$ is even, this is the same as $\\simplify[fractionNumbers,simplifyFractions]{{(a*r^start)/(1-r)}}\\left(1-\\left(\\var[fractionNumbers]{-r}\\right)^\\var{n+1}\\right)$ $=\\var[fractionNumbers]{sum}$.

\n

Also, notice that since $r=-1$ each term is the same as the last except the sign has been swapped! This means the result of the sum oscillates between $\\var[fractionNumbers]{a*r^start}$ and $0$. So if there are an even number of terms the sum will be $0$ but if there are an odd number of terms the sum will be $\\var[fractionNumbers]{a*r^start}$.

\n

For this question, you should be able to write your answer as this expression instead of using the calculator and getting (possibly) a decimal approximation.

\n

\n

c)

\n

A geometric series converges if and only if $|r|<1$ (that is, $-1<r<1$). We can realise this by taking the limit as $n$ goes to infinity of the sum of the first $n$ terms. Recall the sum of the first $n$ terms is $S_n=\\frac{a(1-r^n)}{1-r}$. If $|r|<1$ and we take the limit as $n\\rightarrow \\infty$, then $r^n\\rightarrow 0$ and therefore 

\n

\\[S_\\infty=\\frac{a}{1-r}, \\qquad \\text{for }|r|<1.\\]

\n

In our case, $|r|=\\var[fractionNumbers]{abs(r)}<1$ and so the series converges to \\[\\frac{\\var[fractionNumbers]{a*r^start}}{1-\\var[fractionNumbers]{r}}=\\simplify[fractionNumbers]{{a*r^start/(1-r)}}\\]

\n

In our case, $|r|=\\var[fractionNumbers]{abs(r)}\\not<1$ and so the series diverges.

\n

", "name": "Geometric series: sigma notation", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}