// Numbas version: exam_results_page_options {"name": "Series: re-indexing", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"rulesets": {}, "variable_groups": [], "tags": [], "parts": [{"variableReplacementStrategy": "originalfirst", "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "sortAnswers": false, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "gaps": [{"variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "showFractionHint": true, "allowFractions": false, "variableReplacements": [], "minValue": "{start+shift}", "scripts": {}, "marks": 1, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "unitTests": [], "type": "numberentry", "correctAnswerFraction": false, "maxValue": "{start+shift}", "correctAnswerStyle": "plain", "mustBeReduced": false}, {"variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "showFractionHint": true, "allowFractions": false, "variableReplacements": [], "minValue": "{stop+shift}", "scripts": {}, "marks": 1, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "unitTests": [], "type": "numberentry", "correctAnswerFraction": false, "maxValue": "{stop+shift}", "correctAnswerStyle": "plain", "mustBeReduced": false}, {"variableReplacementStrategy": "originalfirst", "customName": "", "failureRate": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "vsetRangePoints": 5, "checkingType": "absdiff", "variableReplacements": [], "valuegenerators": [{"name": "n", "value": ""}], "scripts": {}, "marks": 1, "extendBaseMarkingAlgorithm": true, "checkingAccuracy": 0.001, "customMarkingAlgorithm": "", "vsetRange": [0, 1], "useCustomName": false, "answer": "n-{shift}", "unitTests": [], "type": "jme", "showPreview": true, "checkVariableNames": false}], "unitTests": [], "type": "gapfill", "prompt": "

Rewrite the sum \\[\\sum_{n=\\var{start}}^{\\var{stop}}t_nx^{\\simplify{n+{shift}}}\\] so that it only involves $x^{n}$ terms, by specifying values for $a$ and $b$ and an expression for $c$:

\n

\\[\\sum_{n=\\var{start}}^{\\var{stop}}t_nx^{\\simplify{n+{shift}}}=\\sum_{n=a}^b t_cx^n\\]

\n

where $a=$[[0]], $b=$[[1]] and $c=$[[2]].

"}, {"variableReplacementStrategy": "originalfirst", "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "sortAnswers": false, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "gaps": [{"variableReplacementStrategy": "originalfirst", "customName": "", "failureRate": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "vsetRangePoints": 5, "checkingType": "absdiff", "variableReplacements": [], "valuegenerators": [{"name": "n", "value": ""}, {"name": "x", "value": ""}], "scripts": {}, "marks": "1", "extendBaseMarkingAlgorithm": true, "checkingAccuracy": 0.001, "customMarkingAlgorithm": "", "vsetRange": [0, 1], "useCustomName": false, "answer": "1/(fact(n)*{c}^n)*x^({d}n)", "unitTests": [], "type": "jme", "showPreview": true, "checkVariableNames": false}], "unitTests": [], "type": "gapfill", "prompt": "

Given \\[y=\\sum_{n=0}^\\infty t_n x^n,\\]

\n

where \\[t_n=\\begin{cases}0,& \\text{if } n \\text{ is not divisible by } \\var{d}\\\\\\dfrac{t_0}{\\left(\\frac{n}{\\var{d}}\\right)! \\var{c}^\\frac{n}{\\var{d}}},& \\text{if } n \\text{ is divisible by }\\var{d}\\end{cases}\\]

\n

rewrite the sum so that each value of the index corresponds to a non-zero coefficient:

\n

\n

$\\displaystyle y=t_0\\sum_{n=0}^\\infty$ [[0]]

\n

Note: To input say $\\dfrac{10!5^{2n}}{x+1}$ you could type 10!*5^(2n)/(x+1)

"}, {"variableReplacementStrategy": "originalfirst", "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "sortAnswers": false, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "gaps": [{"variableReplacementStrategy": "originalfirst", "customName": "", "failureRate": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "vsetRangePoints": 5, "checkingType": "absdiff", "variableReplacements": [], "valuegenerators": [{"name": "n", "value": ""}, {"name": "x", "value": ""}], "scripts": {}, "marks": "1", "extendBaseMarkingAlgorithm": true, "checkingAccuracy": 0.001, "customMarkingAlgorithm": "", "vsetRange": [0, 1], "useCustomName": false, "answer": "{b}^(2n+1)/(fact(2n+1))*x^(2n+1)", "unitTests": [], "type": "jme", "showPreview": true, "checkVariableNames": false}], "unitTests": [], "type": "gapfill", "prompt": "

Given \\[\\sinh(\\var{b}x)=\\sum_{n=0}^\\infty t_n x^n,\\]

\n

where \\[t_n=\\begin{cases}\\frac{\\var{b}^n}{n!},& \\text{if } n \\text{ is odd}\\\\0,& \\text{if } n \\text{ is even}\\end{cases}\\]

\n

rewrite the sum so that each value of the index corresponds to a non-zero coefficient:

\n

\n

$\\displaystyle \\sinh(\\var{b}x)=\\sum_{n=0}^\\infty$ [[0]]

\n

Note: To input say $\\dfrac{10!5^{2n}}{x+1}$ you could type 10!*5^(2n)/(x+1)

"}], "functions": {}, "name": "Series: re-indexing", "ungrouped_variables": ["start", "length", "stop", "shift", "b", "c", "d"], "preamble": {"js": "", "css": ""}, "variablesTest": {"maxRuns": 100, "condition": ""}, "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": "

Often students need practice re-indexing series, these are three questions that give them that opportunity.

"}, "extensions": [], "statement": "

The following questions focus on re-indexing sums.

", "advice": "

a) 

\n

We have $\\displaystyle\\sum_{n=\\var{start}}^{\\var{stop}}t_nx^{\\simplify{n+{shift}}}$ but we want $x^{n}$ terms! It's like we want to replace $\\simplify{n+{shift}}$ with $n$ but it can get a bit messy or confusing if we do this because we have to keep track of which are the 'old' and which are the 'new' $n$'s. Instead, we normally do the substitution $k=\\simplify{n+{shift}}$ which then implies $n=\\simplify{k-{shift}}$.

\n

So we go through and change all the values or expressions of $n$ to $k$:

\n\n

Therefore $\\displaystyle\\sum_{n=\\var{start}}^{\\var{stop}}t_nx^{\\simplify{n+{shift}}}=\\sum_{k=\\var{start+shift}}^\\var{stop+shift} t_{\\simplify{k-{shift}}}x^k$, but now we can choose to use $n$ instead of $k$ for our index (or dummy variable) so we replace $k$ with $n$:

\n

\\[\\sum_{n=\\var{start}}^{\\var{stop}}t_nx^{\\simplify{n+{shift}}}=\\sum_{n=\\var{start+shift}}^\\var{stop+shift} t_{\\simplify{n-{shift}}}x^n\\]

\n

\n

b) 

\n

We have $y=\\sum_{n=0}^\\infty t_n x^n$ where \\[t_n=\\begin{cases}0,& \\text{if } n \\text{ is not divisible by } \\var{d}\\\\\\dfrac{t_0}{\\left(\\frac{n}{\\var{d}}\\right)! \\var{c}^\\frac{n}{\\var{d}}},& \\text{if } n \\text{ is divisible by }\\var{d}\\end{cases}\\]

\n

Since a lot of the terms in this sum are actually just zero and the sum relies on a piecewise function, it would be nice to make this sum only deal with the non-zero terms. Notice the only non-zero terms are when $n=0, \\,\\var{d}, \\,\\var{2*d}, \\,\\var{3*d}, \\ldots$ (the multiples of $\\var{d}$) so we make the substitution $k=\\frac{n}{\\var{d}}$, which will make the non-zero terms correspond to $k=0,\\,1,\\,2,\\,3,\\ldots$. So now our sum will be \\[y=\\sum_{k=0}^\\infty \\frac{t_0}{k!\\var{c}^k} x^k\\]

\n

but now we can choose to use $n$ instead of $k$ for our index (or dummy variable) so we replace $k$ with $n$ and we can pull out the common factor of $t_0$:

\n

\\[y=t_0\\sum_{n=0}^\\infty \\frac{x^n}{n!\\var{c}^n}\\]

\n

\n

c)

\n

We have $\\sinh(\\var{b}x)=\\sum_{n=0}^\\infty t_n x^n$ where \\[t_n=\\begin{cases}\\frac{\\var{b}^n}{n!},& \\text{if } n \\text{ is odd}\\\\0,& \\text{if } n \\text{ is even}\\end{cases}\\]

\n

Since half the terms in this sum are actually just zero and the sum relies on a piecewise function, it would be nice to make this sum only deal with the non-zero terms. Notice the only non-zero terms are when $n=1,\\,3,\\,5, \\ldots$ so we make the substitution $n=2k+1$, which will make the non-zero terms correspond to $k=0,\\,1,\\,2,\\,3,\\ldots$. So now our sum will be \\[\\sum_{k=0}^\\infty\\frac{\\var{b}^{2k+1}}{(2k+1)!}x^{2k+1} \\]

\n

but now we can choose to use $n$ instead of $k$ for our index (or dummy variable) so we replace $k$ with $n$:

\n

\\[\\sinh(\\var{b}x)=\\sum_{n=0}^\\infty\\frac{\\var{b}^{2n+1}}{(2n+1)!}x^{2n+1}\\]

", "variables": {"c": {"description": "", "definition": "random(2..10)", "group": "Ungrouped variables", "name": "c", "templateType": "anything"}, "length": {"description": "", "definition": "random(5..20)", "group": "Ungrouped variables", "name": "length", "templateType": "anything"}, "start": {"description": "", "definition": "random(1..12)", "group": "Ungrouped variables", "name": "start", "templateType": "anything"}, "b": {"description": "", "definition": "random(2..10 except c)", "group": "Ungrouped variables", "name": "b", "templateType": "anything"}, "stop": {"description": "", "definition": "start+length", "group": "Ungrouped variables", "name": "stop", "templateType": "anything"}, "shift": {"description": "", "definition": "random(-10..10 except [0,-start])", "group": "Ungrouped variables", "name": "shift", "templateType": "anything"}, "d": {"description": "", "definition": "random(2..10 except [b,c])", "group": "Ungrouped variables", "name": "d", "templateType": "anything"}}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}