// Numbas version: exam_results_page_options {"name": "Combining Logarithm Rules to Solve Equations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"tags": [], "statement": "", "variable_groups": [{"variables": ["p", "v", "q", "m"], "name": "part c"}], "ungrouped_variables": ["x1", "y1", "z1", "b1", "c", "b4", "b", "b2"], "variables": {"c": {"group": "Ungrouped variables", "description": "", "definition": "b1^b4", "name": "c", "templateType": "anything"}, "b4": {"group": "Ungrouped variables", "description": "", "definition": "random(2..4 except b1)", "name": "b4", "templateType": "anything"}, "p": {"group": "part c", "description": "", "definition": "random(3..6)", "name": "p", "templateType": "anything"}, "b2": {"group": "Ungrouped variables", "description": "", "definition": "b-2", "name": "b2", "templateType": "anything"}, "v": {"group": "part c", "description": "", "definition": "random(2..10)", "name": "v", "templateType": "anything"}, "b1": {"group": "Ungrouped variables", "description": "", "definition": "random(2..8 #2)", "name": "b1", "templateType": "anything"}, "b": {"group": "Ungrouped variables", "description": "", "definition": "c/2", "name": "b", "templateType": "anything"}, "y1": {"group": "Ungrouped variables", "description": "", "definition": "random(2..6)", "name": "y1", "templateType": "anything"}, "z1": {"group": "Ungrouped variables", "description": "", "definition": "random(2..6 except y1)", "name": "z1", "templateType": "anything"}, "m": {"group": "part c", "description": "", "definition": "random(2..20)", "name": "m", "templateType": "anything"}, "q": {"group": "part c", "description": "", "definition": "v^p", "name": "q", "templateType": "anything"}, "x1": {"group": "Ungrouped variables", "description": "", "definition": "repeat(random(2..20),8)", "name": "x1", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "preamble": {"css": "", "js": ""}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Apply and combine logarithm laws in a given equation to find the value of $x$.

"}, "parts": [{"variableReplacementStrategy": "originalfirst", "unitTests": [], "marks": 0, "customMarkingAlgorithm": "", "customName": "", "prompt": "

Solve for $x$.

\n

$\\log_\\var{b1}(x-\\var{b2})-\\log_\\var{b1}\\left(\\displaystyle\\frac{1}{x}\\right)=\\var{b4}$

\n

$x=$ [[0]]

", "showCorrectAnswer": true, "sortAnswers": false, "gaps": [{"failureRate": 1, "variableReplacementStrategy": "originalfirst", "unitTests": [], "marks": "2", "customMarkingAlgorithm": "", "vsetRangePoints": 5, "customName": "", "answer": "{b}", "showCorrectAnswer": true, "checkingAccuracy": 0.001, "checkVariableNames": false, "checkingType": "absdiff", "extendBaseMarkingAlgorithm": true, "type": "jme", "vsetRange": [0, 1], "useCustomName": false, "showFeedbackIcon": true, "showPreview": true, "valuegenerators": [], "variableReplacements": [], "scripts": {}}], "extendBaseMarkingAlgorithm": true, "type": "gapfill", "useCustomName": false, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}}, {"variableReplacementStrategy": "originalfirst", "unitTests": [], "marks": 0, "customMarkingAlgorithm": "", "stepsPenalty": 0, "customName": "", "prompt": "

Solve for $x$ and leave your answer in the form  $x=\\displaystyle\\frac{e^{a}}{b}$.

\n

$\\var{p}\\ln(x)+\\ln(\\var{q})=\\var{m}$

\n

$x=$ [[0]]

", "steps": [{"variableReplacementStrategy": "originalfirst", "unitTests": [], "marks": 0, "customMarkingAlgorithm": "", "customName": "", "prompt": "

You may find the following conversion useful

\n

\$\\ln(x)=\\log_e(x)\$

", "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "type": "information", "useCustomName": false, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}}], "showCorrectAnswer": true, "sortAnswers": false, "gaps": [{"variableReplacementStrategy": "originalfirst", "vsetRange": [0, 1], "notallowed": {"partialCredit": 0, "showStrings": false, "message": "", "strings": ["*", ")^"]}, "checkingType": "absdiff", "type": "jme", "showFeedbackIcon": true, "useCustomName": false, "customMarkingAlgorithm": "", "valuegenerators": [], "variableReplacements": [], "scripts": {}, "checkVariableNames": false, "failureRate": 1, "marks": "2", "unitTests": [], "customName": "", "answer": "e^({m}/{p})/{v}", "showCorrectAnswer": true, "vsetRangePoints": 5, "checkingAccuracy": 0.001, "extendBaseMarkingAlgorithm": true, "showPreview": true}], "extendBaseMarkingAlgorithm": true, "type": "gapfill", "useCustomName": false, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}}], "advice": "

a)

\n

We can use the logarithm law

\n

\$k\\log_a(x)=\\log_a(x^k)\\text{,}\$

\n

to also give a more specific rule

\n

\\\begin{align} \\log_a\\left(\\frac{1}{x}\\right)&=\\log_a(x^{-1})\\\\ &=-\\log_a(x)\\text{.} \\end{align}\

\n

This means we can write our expression as

\n

\$\\log_\\var{b1}(x-\\var{b2})+\\log_\\var{b1}({x})=\\var{b4}\\text{.}\$

\n

Then using the rule

\n

\$\\log_a(x)+\\log_a(y)=\\log_a(x\\times y)\\text{,}\$

\n

we can write our equation as

\n

\\\begin{align} \\log_\\var{b1}(x(x-\\var{b2}))&=\\var{b4}\\\\ \\log_\\var{b1}(x^2-\\var{b2}x)&=\\var{b4}\\text{.}\\\\ \\end{align}\

\n

We then rely on the definition of $\\log_a$

\n

\$b=a^c \\Longleftrightarrow \\log_{a}b=c\$

\n

to write our equation as

\n

\\\begin{align} x^2-\\var{b2}x&=\\var{b1}^\\var{b4}\\\\ &=\\var{b1^b4}\\text{.} \\end{align}\

\n

We can then write out our equation and solve either by factorising or using the quadratic formula;

\n

\\\begin{align} x^2-\\var{b2}x-\\var{b1^{b4}}&=0\\\\ (x+2)(x-\\var{b})&=0\\text{.} \\end{align}\

\n

As logarithms can only be applied to positive numbers, the only possible value for $x$ is $\\var{b}$.

\n

b)

\n

$\\ln(x)$ is a shorthand for $\\log_e(x)$, so we can apply the same laws of logarithms here.

\n

Therefore applying the rule

\n

\$k\\log_a(x)=\\log_a(x^k)\$

\n

we can write our equation as

\n

\$\\ln(x^\\var{p})+\\ln(\\var{q})=\\var{m}\\text{.}\$

\n

Then using the rule

\n

\$\\log_a(x)+\\log_a(y)=\\log_a(x\\times y)\$

\n

we can write our equation as

\n

\$\\ln(\\var{q}x^\\var{p})=\\var{m}\\text{.}\$

\n

As $\\ln=\\log_e$ we can use

\n

\$a=b^c \\Longleftrightarrow \\log_ba=c\$

\n

to write our equation as

\n

\$\\var{q}x^\\var{p}=e^\\var{m}\\text{.}\$

\n

We then just need to rearrange our equation

\n

\\\begin{align} \\var{q}x^\\var{p}&=e^\\var{m}\\\\[0.5em] x^\\var{p}&=\\frac{e^\\var{m}}{\\var{q}}\\\\[0.5em] x&=\\frac{e^{\\var{m}/\\var{p}}}{\\var{q^(1/{p})}} \\end{align}\

", "functions": {}, "rulesets": {}, "extensions": [], "name": "Combining Logarithm Rules to Solve Equations", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}