// Numbas version: finer_feedback_settings {"name": "Finding the formula for the $n^{\\text{th}}$ term of linear sequences", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"rulesets": {}, "variable_groups": [], "tags": [], "parts": [{"variableReplacementStrategy": "originalfirst", "steps": [{"variableReplacementStrategy": "originalfirst", "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "unitTests": [], "type": "information", "prompt": "

The formula for the $n^{\\text{th}}$ term of an arithmetic sequence is

\n

\\[a_n = a_1 + (n-1)d, \\]

\n

where

\n"}, {"variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "variableReplacements": [], "showFeedbackIcon": true, "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "minValue": "{m[1]*2}", "useCustomName": false, "marks": 1, "extendBaseMarkingAlgorithm": true, "unitTests": [], "type": "numberentry", "correctAnswerFraction": false, "mustBeReduced": false, "showCorrectAnswer": true, "showFractionHint": true, "customName": "", "scripts": {}, "allowFractions": false, "customMarkingAlgorithm": "", "prompt": "

For this arithmetic sequence, what is $a_1$?

", "maxValue": "{m[1]*2}"}, {"variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "variableReplacements": [], "showFeedbackIcon": true, "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "minValue": "{m[1]}", "useCustomName": false, "marks": 1, "extendBaseMarkingAlgorithm": true, "unitTests": [], "type": "numberentry", "correctAnswerFraction": false, "mustBeReduced": false, "showCorrectAnswer": true, "showFractionHint": true, "customName": "", "scripts": {}, "allowFractions": false, "customMarkingAlgorithm": "", "prompt": "

What is $d$?

", "maxValue": "{m[1]}"}], "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "sortAnswers": false, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "stepsPenalty": 0, "gaps": [{"variableReplacementStrategy": "originalfirst", "customName": "", "failureRate": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "vsetRangePoints": 5, "checkingType": "absdiff", "variableReplacements": [], "valuegenerators": [{"name": "n", "value": ""}], "scripts": {}, "marks": "3", "extendBaseMarkingAlgorithm": true, "checkingAccuracy": 0.001, "customMarkingAlgorithm": "", "vsetRange": [0, 1], "useCustomName": false, "answer": "{m[1]}*n+{m[1]}", "unitTests": [], "type": "jme", "showPreview": true, "checkVariableNames": false}], "unitTests": [], "type": "gapfill", "prompt": "

$\\var{m[1]*2}, \\var{m[1]*3}, \\var{m[1]*4}, \\ldots$

\n

$n^\\text{th}$ term = [[0]]

"}, {"variableReplacementStrategy": "originalfirst", "steps": [{"variableReplacementStrategy": "originalfirst", "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "unitTests": [], "type": "information", "prompt": "

The formula for the $n^{\\text{th}}$ term of an arithmetic sequence is

\n

\\[a_n = a_1 + (n-1)d, \\]

\n

where

\n"}, {"variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "variableReplacements": [], "showFeedbackIcon": true, "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "minValue": "{m[2]*8+2}", "useCustomName": false, "marks": 1, "extendBaseMarkingAlgorithm": true, "unitTests": [], "type": "numberentry", "correctAnswerFraction": false, "mustBeReduced": false, "showCorrectAnswer": true, "showFractionHint": true, "customName": "", "scripts": {}, "allowFractions": false, "customMarkingAlgorithm": "", "prompt": "

For this arithmetic sequence, what is $a_1$?

", "maxValue": "{m[2]*8+2}"}, {"variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "variableReplacements": [], "showFeedbackIcon": true, "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "minValue": "{-m[2]}", "useCustomName": false, "marks": 1, "extendBaseMarkingAlgorithm": true, "unitTests": [], "type": "numberentry", "correctAnswerFraction": false, "mustBeReduced": false, "showCorrectAnswer": true, "showFractionHint": true, "customName": "", "scripts": {}, "allowFractions": false, "customMarkingAlgorithm": "", "prompt": "

What is $d$?

", "maxValue": "{-m[2]}"}], "customName": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "sortAnswers": false, "variableReplacements": [], "scripts": {}, "marks": 0, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "useCustomName": false, "stepsPenalty": 0, "gaps": [{"variableReplacementStrategy": "originalfirst", "customName": "", "failureRate": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "vsetRangePoints": 5, "checkingType": "absdiff", "variableReplacements": [], "valuegenerators": [{"name": "n", "value": ""}], "scripts": {}, "marks": "3", "extendBaseMarkingAlgorithm": true, "checkingAccuracy": 0.001, "customMarkingAlgorithm": "", "vsetRange": [0, 1], "useCustomName": false, "answer": "-{m[2]}*n+{m[2]*9+2}", "unitTests": [], "type": "jme", "showPreview": true, "checkVariableNames": false}], "unitTests": [], "type": "gapfill", "prompt": "

$\\var{m[2]*8+2}, \\var{m[2]*7+2}, \\var{m[2]*6+2}...$

\n

$n^\\text{th}$ term = [[0]]

"}], "functions": {}, "name": "Finding the formula for the $n^{\\text{th}}$ term of linear sequences", "ungrouped_variables": ["m", "n", "c", "ci", "ni", "b"], "preamble": {"js": "", "css": ""}, "variablesTest": {"maxRuns": 100, "condition": ""}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Given the first three terms of a sequence, give a formula for the $n^\\text{th}$ term.

\n

In the first sequence, $d$ is positive. In the second sequence, $d$ is negative.

"}, "extensions": [], "statement": "

A linear sequence is a series of numbers that either increases or decreases by a constant amount at each step.

\n

Find formulas for the $n^{\\text{th}}$ term for each of the following linear sequences, where the values for $n=1\\text{,}2\\text{,}3$ are given:

", "advice": "

Both of these sequences are linear, or arithmetic, sequences. To find formulas for these sequences we need to identify their first terms and common differences.

\n

a)

\n

The formula for the $n^\\text{th}$ term of an arithmetic sequence is

\n

\\[ a_n = a_1 + (n-1)d \\text{.} \\]

\n

$a_1$ is the first term and $d$ the common difference between consecutive terms, which we need to identify.

\n

We can find these by drawing up a table of $a_n$ against $n$, and the differences between consecutive terms.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$n$123
$a_n$$\\pmb{\\var{m[1]*2}}$$\\var{m[1]*3}$$\\var{m[1]*4}$
First differences$\\pmb{\\var{m[1]}}$$\\pmb{\\var{m[1]}}$
\n

The first term and common difference have been highlighted in bold; we can use these to write the formula for the sequence.

\n

\\begin{align}
a_n &= a_1+(n-1)d \\\\
&= \\var{m[1]*2}+(n-1)\\times\\var{m[1]} \\\\
&= \\var{m[1]}n + \\var{m[1]}\\text{.}
\\end{align}

\n

b)

\n

Similar to the part a), we can identify $a_1$ and $d$ for this sequence by drawing a table of $a_n$ against $n$.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$n$123
$a_n$$\\pmb{\\var{m[2]*8+2}}$$\\simplify{{m[2]}*7+2}$$\\simplify{{m[2]}*6+2}$
First differences$\\pmb{\\var{-m[2]}}$$\\pmb{\\var{-m[2]}}$
\n

The first term and common difference have been highlighted in bold; we can use these to form the formula for the sequence. 

\n

\\begin{align}
a_n &=a_1+(n-1)d \\\\
&=\\var{m[2]*8+2}+(n-1)\\times\\var{-m[2]} \\\\
&=-\\var{m[2]}n + \\var{m[2]*9+2}\\text{.}
\\end{align}

", "variables": {"c": {"description": "", "definition": "repeat(random(3..13 except[10]),8)", "group": "Ungrouped variables", "name": "c", "templateType": "anything"}, "n": {"description": "", "definition": "repeat(random(1..4),7)", "group": "Ungrouped variables", "name": "n", "templateType": "anything"}, "ci": {"description": "", "definition": "repeat(random(6..20),10)", "group": "Ungrouped variables", "name": "ci", "templateType": "anything"}, "b": {"description": "", "definition": "repeat(random(2..4), 5)", "group": "Ungrouped variables", "name": "b", "templateType": "anything"}, "ni": {"description": "", "definition": "repeat(random(19..40),10)", "group": "Ungrouped variables", "name": "ni", "templateType": "anything"}, "m": {"description": "", "definition": "repeat(random(2..10),5)", "group": "Ungrouped variables", "name": "m", "templateType": "anything"}}, "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}