// Numbas version: exam_results_page_options {"name": "Domain of a square root function", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"metadata": {"description": "

Given a randomised square root function select the possible ways of writing the domain of the function.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "type": "question", "preamble": {"css": "", "js": ""}, "advice": "

a) The domain of $f(x)=\\sqrt{x}$ is the set of all non-negative numbers, i.e. $\\{x\\in\\mathbb{R}:\\,x\\ge0\\}$ or in interval notation, $[0,\\infty)$. This means that the square root of any negative number is not defined. 

\n

\n

b) For a function such as $g(t)=\\sqrt{\\simplify{t-{c[0]}}}$ we require that the square root acts on a non-negative number, that is, $\\simplify{t-{c[0]}>=0}$. Rearranging this inequality for $t$ gives $\\simplify{t>={c[0]}}$. Therefore, $\\text{dom}(g)=\\{t\\in\\mathbb{R}:\\,\\simplify{t>={c[0]}}\\}$.

\n

\n

c) Note, $\\sqrt[2]{\\quad}$ and $\\sqrt{\\quad}$ mean the same thing. For a function such as $h(s)=\\simplify{{c[0]}root({c[1]}s+{c[2]},2)+{c[3]}}$ we require that the square root acts on a non-negative number, that is, $\\simplify{{c[1]}s+{c[2]}>=0}$. Rearranging this inequality for $s$ gives $s>= \\simplify[fractionNumbers]{{-c[2]/c[1]}}$ $s<= \\simplify[fractionNumbers]{{-c[2]/c[1]}}$. Therefore, $\\text{dom}(h)=\\{s\\in\\mathbb{R}:\\, s\\ge \\simplify[fractionNumbers]{{-c[2]/c[1]}}\\}$ $\\text{dom}(h)=\\{s\\in\\mathbb{R}:\\, s\\leq \\simplify[fractionNumbers]{{-c[2]/c[1]}}\\}$.

\n

\n

d) For a function such as $\\simplify{{out}({inp})}=\\sqrt{\\simplify{{inp}^2-{a+b}{inp}+{a*b}}}$ we require that the square root acts on a non-negative number, that is, $\\simplify{{inp}^2-{a+b}{inp}+{a*b}>=0}$. Notice $\\simplify{{inp}^2-{a+b}{inp}+{a*b}=({inp}-{a})({inp}-{b})}$, which is non-negative when $\\simplify{({inp}-{a})}$ and $\\simplify{({inp}-{b})}$ are both negative, or both non-negative. That is, we require $\\simplify{{inp}<={a}}$ or $\\simplify{{inp}>={b}}$. Therefore, $\\text{dom}(\\simplify{{out}})=\\{\\simplify{{inp}}\\in\\mathbb{R}:\\,\\simplify{{inp}<={a}} \\text{ or } \\simplify{{inp}>={b}}\\}$.

\n

\n

e) For a function such as $\\simplify{{out}({inp})=root(-{inp}^2+{d}{inp},2)}$ we require that the square root acts on a non-negative number, that is, $\\simplify{-{inp}^2+{d}{inp}>=0}$. Notice $\\simplify{-{inp}^2+{d}{inp}={inp}({d}-{inp})}$, which is non-negative when $\\simplify{{inp}}$ and $\\simplify{({d}-{inp})}$ are both negative, or both non-negative. That is, we require $\\simplify{0<={inp}<={d}}$. Therefore, $\\text{dom}(\\simplify{{out}})=\\{\\simplify{{inp}}\\in\\mathbb{R}:\\,\\simplify{0<={inp}<={d}}\\}$.

\n

\n

", "rulesets": {}, "variable_groups": [], "functions": {}, "ungrouped_variables": ["out", "inp", "num", "n", "c", "rat", "a", "b", "base", "d"], "name": "Domain of a square root function", "tags": [], "variablesTest": {"condition": "", "maxRuns": 100}, "extensions": [], "variables": {"b": {"name": "b", "definition": "a+random(1..12)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "d": {"name": "d", "definition": "random(1..12)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "base": {"name": "base", "definition": "random(2..12 except 10)", "group": "Ungrouped variables", "description": "

base

", "templateType": "anything"}, "c": {"name": "c", "definition": "shuffle(-12..12 except 0)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "n": {"name": "n", "definition": "random(2..4)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "a": {"name": "a", "definition": "random(-12..-1)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "inp": {"name": "inp", "definition": "expression(random('x','r','s','t','w'))", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "out": {"name": "out", "definition": "expression(random('f','h','g','p','q','y'))", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "rat": {"name": "rat", "definition": "if(n=3,'\\\\[\\\\simplify{{out}({inp})=({num[0]}{inp}+{num[1]})/(({inp}-{c[0]})({inp}-{c[1]})*({inp}-{c[2]}))}\\\\]',\nif(n=2,'\\\\[\\\\simplify{{out}({inp})=({num[0]}{inp}+{num[1]})/(({inp}-{c[0]})({inp}-{c[1]}))}\\\\]',\n'\\\\[\\\\simplify{{out}({inp})=({num[0]}{inp}+{num[1]})/(({inp}-{c[0]})({inp}-{c[1]})*({inp}-{c[2]})*({inp}-{c[3]}))}\\\\]'))\n \n \n", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "num": {"name": "num", "definition": "[random(-12..12),random(-12..12 except 0)]", "group": "Ungrouped variables", "description": "", "templateType": "anything"}}, "statement": "

Given the real functions below, you should be able to determine their domains. 

", "parts": [{"type": "gapfill", "scripts": {}, "variableReplacementStrategy": "originalfirst", "marks": 0, "prompt": "

Give an example of a real number that is in the domain of the function

\n

\\[f(x)=\\sqrt{x}.\\]

\n

 [[0]] $\\in \\text{dom}(f)$

", "showCorrectAnswer": true, "gaps": [{"maxValue": "{infinity}", "showCorrectAnswer": true, "allowFractions": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "marks": 1, "showFeedbackIcon": true, "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "scripts": {}, "correctAnswerStyle": "plain", "minValue": "0", "mustBeReduced": false, "variableReplacements": [], "correctAnswerFraction": false}], "showFeedbackIcon": true, "variableReplacements": []}, {"type": "1_n_2", "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "marks": 0, "prompt": "

Given the function \\[g(t)=\\sqrt{\\simplify{t-{c[0]}}},\\] what do we require of $t$ so that $g(t)$ is defined?

\n

", "displayColumns": "1", "minMarks": 0, "distractors": ["", "", "", "", "", ""], "shuffleChoices": true, "scripts": {}, "matrix": ["1", 0, 0, 0, 0, 0], "displayType": "radiogroup", "choices": ["

$t\\ge\\var{c[0]}$

", "

$t> \\var{c[0]}$

", "

$t\\le\\var{c[0]}$

", "

$t< \\var{c[0]}$

", "

$t>0$

", "

$t\\ne0$

"], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": []}, {"type": "1_n_2", "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "marks": 0, "prompt": "

Given the function \\[h(s)=\\simplify{{c[0]}root({c[1]}s+{c[2]},2)+{c[3]}},\\] which of the following represents the domain of $h$?

", "displayColumns": "1", "minMarks": 0, "distractors": ["", "", "", "", "", ""], "shuffleChoices": true, "scripts": {}, "matrix": ["0", 0, 0, "1", 0, 0], "displayType": "radiogroup", "choices": ["

$[\\var{c[3]},\\infty)$

", "

$(0,\\infty)$

", "

$\\{s\\in\\mathbb{R}:\\, s\\ge 10\\}$

", "

$\\{s\\in\\mathbb{R}:\\, s\\ge \\simplify[fractionNumbers]{{-c[2]/c[1]}}\\}$ $\\{s\\in\\mathbb{R}:\\, s\\le \\simplify[fractionNumbers]{{-c[2]/c[1]}}\\}$

", "

$\\{s\\in\\mathbb{R}:\\, s\\le \\var{c[3]}\\}$

", "

$\\{s\\in\\mathbb{R}:\\, s\\le \\simplify[fractionNumbers]{{-c[2]/c[1]}}\\}$ $\\{s\\in\\mathbb{R}:\\, s\\ge \\simplify[fractionNumbers]{{-c[2]/c[1]}}\\}$

"], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": []}, {"type": "1_n_2", "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "marks": 0, "prompt": "

Given the function \\[\\simplify{{out}({inp})}=\\sqrt{\\simplify{{inp}^2-{a+b}{inp}+{a*b}}},\\] which of the following represents the domain of $\\simplify{{out}}$?

\n

", "displayColumns": "1", "minMarks": 0, "distractors": ["", "", "", "", ""], "shuffleChoices": true, "scripts": {}, "matrix": ["1", 0, 0, 0, 0], "displayType": "radiogroup", "choices": ["

$\\{\\simplify{{inp}}\\in\\mathbb{R}:\\,\\simplify{{inp}<={a}} \\text{ or } \\simplify{{inp}>={b}}\\}$

", "

$\\{\\simplify{{inp}}\\in\\mathbb{R}:\\,\\simplify{{a}<={inp} <={b}}\\}$

", "

$\\{\\simplify{{inp}}\\in\\mathbb{R}:\\,\\simplify{{inp}>={a*b}}\\}$

", "

$\\{\\simplify{{inp}}\\in\\mathbb{R}:\\,\\simplify{{inp}>=0}\\}$

", "

$\\{\\simplify{{inp}}\\in\\mathbb{R}:\\,\\simplify{{min([a+b,a*b])}<={inp} <={max([a+b,a*b])}}\\}$

"], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": []}, {"type": "1_n_2", "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "marks": 0, "prompt": "

Given the function \\[\\simplify{{out}({inp})=root(-{inp}^2+{d}{inp},2)},\\] which of the following represents the domain of $\\simplify{{out}}$?

\n

", "displayColumns": "1", "minMarks": 0, "distractors": ["", "", "", "", ""], "shuffleChoices": true, "scripts": {}, "matrix": ["0", "1", 0, 0, 0], "displayType": "radiogroup", "choices": ["

$\\{\\simplify{{inp}}\\in\\mathbb{R}:\\,\\simplify{{inp}<=0} \\text{ or } \\simplify{{inp}>={d}}\\}$

", "

$\\{\\simplify{{inp}}\\in\\mathbb{R}:\\,\\simplify{0<={inp} <={d}}\\}$

", "

$\\{\\simplify{{inp}}\\in\\mathbb{R}:\\,\\simplify{{inp}>={d}}\\}$

", "

$\\{\\simplify{{inp}}\\in\\mathbb{R}:\\,\\simplify{{inp}>=0}\\}$

", "

$\\{\\simplify{{inp}}\\in\\mathbb{R}:\\,\\simplify{{-d}<={inp} <={d}}\\}$

"], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": []}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}