// Numbas version: exam_results_page_options {"name": "Arithmetic Series 4", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"correctAnswerFraction": false, "maxValue": "{t1}", "showCorrectAnswer": true, "marks": 1, "integerAnswer": true, "prompt": "

Find the first term

", "integerPartialCredit": 0, "variableReplacementStrategy": "originalfirst", "scripts": {}, "showPrecisionHint": false, "variableReplacements": [], "type": "numberentry", "allowFractions": false, "minValue": "{t1}"}, {"correctAnswerFraction": false, "maxValue": "{tans}", "showCorrectAnswer": true, "marks": 1, "integerAnswer": true, "prompt": "

Find the sum of the first $\\var{tsum}$ terms

", "integerPartialCredit": 0, "variableReplacementStrategy": "originalfirst", "scripts": {}, "showPrecisionHint": false, "variableReplacements": [], "type": "numberentry", "allowFractions": false, "minValue": "{tans}"}, {"correctAnswerFraction": false, "maxValue": "ceil((-(2*{t1}-{d})+sqrt((2*{t1}-{d})^2+8000*{d}))/(2*{d}))", "showCorrectAnswer": true, "marks": 1, "integerAnswer": true, "prompt": "

Determine the least value of n for which the sum of the first n terms of the series exceeds 1000.

", "integerPartialCredit": 0, "variableReplacementStrategy": "originalfirst", "scripts": {}, "showPrecisionHint": false, "variableReplacements": [], "type": "numberentry", "allowFractions": false, "minValue": "ceil((-(2*{t1}-{d})+sqrt((2*{t1}-{d})^2+8000*{d}))/(2*{d}))"}], "name": "Arithmetic Series 4", "question_groups": [{"pickQuestions": 0, "name": "", "pickingStrategy": "all-ordered", "questions": []}], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": ""}, "statement": "

The $\\var{n}$th term of an arithmetic series is $\\simplify{{t1}+({n}-1)*{d}}$

\n

The common difference is $\\var{d}$

", "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["t1", "d", "t2", "t3", "t4", "tr", "tsum", "tans", "n", "a", "b", "bsq", "dscrm", "solvet1", "solvet2", "nc"], "rulesets": {}, "functions": {}, "variables": {"dscrm": {"templateType": "anything", "name": "dscrm", "description": "", "group": "Ungrouped variables", "definition": "sqrt(bsq-(4*a*-1000))"}, "t2": {"templateType": "anything", "name": "t2", "description": "", "group": "Ungrouped variables", "definition": "t1+d"}, "n": {"templateType": "anything", "name": "n", "description": "", "group": "Ungrouped variables", "definition": "random(4..20)"}, "nc": {"templateType": "anything", "name": "nc", "description": "", "group": "Ungrouped variables", "definition": "precround(solvet1+solvet2,2)"}, "d": {"templateType": "anything", "name": "d", "description": "", "group": "Ungrouped variables", "definition": "random(2..9 except t1 )"}, "solvet2": {"templateType": "anything", "name": "solvet2", "description": "", "group": "Ungrouped variables", "definition": "dscrm/(2*a)"}, "solvet1": {"templateType": "anything", "name": "solvet1", "description": "", "group": "Ungrouped variables", "definition": "(-b/(2*a))"}, "t4": {"templateType": "anything", "name": "t4", "description": "", "group": "Ungrouped variables", "definition": "t1+3d"}, "b": {"templateType": "anything", "name": "b", "description": "", "group": "Ungrouped variables", "definition": "(2*t1-d)/2"}, "tsum": {"templateType": "anything", "name": "tsum", "description": "", "group": "Ungrouped variables", "definition": "random(11..29)"}, "bsq": {"templateType": "anything", "name": "bsq", "description": "", "group": "Ungrouped variables", "definition": "b^2"}, "tans": {"templateType": "anything", "name": "tans", "description": "", "group": "Ungrouped variables", "definition": "(tsum)/2*(2*t1+(tsum-1)*d)"}, "tr": {"templateType": "anything", "name": "tr", "description": "", "group": "Ungrouped variables", "definition": "random(6..10)"}, "t3": {"templateType": "anything", "name": "t3", "description": "", "group": "Ungrouped variables", "definition": "t1+2d"}, "a": {"templateType": "anything", "name": "a", "description": "", "group": "Ungrouped variables", "definition": "d/2"}, "t1": {"templateType": "anything", "name": "t1", "description": "", "group": "Ungrouped variables", "definition": "random(2..9)"}}, "preamble": {"js": "", "css": ""}, "tags": [], "variable_groups": [], "type": "question", "advice": "

Part a)

\n

To find the first term $a_1$, we need to first start with the formula for the $n^{th}$ term:

\n

$a_n=a_1+d(n-1)$ $_{..(i)}$    which is rearranged in terms of $a_1$:    $a_1=a_n-d(n-1)$ $_{..(ii)}$

\n

We then identify the variables which we know, namely: $n=\\var{n}$,    $a_n=\\simplify{{t1}+({n}-1)*{d}}$,    $d=\\var{d}$

\n

These values can then be subsituted into $_{(ii)}$ and solved for $a_1$:

\n

$a_1=\\simplify{{t1}+({n}-1)*{d}}-\\var{d}(\\var{n}-1)$

\n

Part b)

\n

To find the sum of the first $\\var{tsum}$ terms we take the formula for the sum of an arithmetic series:

\n

$S_n=\\frac{n}{2}(a_1+a_n)$ $_{..(iii)}$

\n

While we don't yet know the value of $a_n$, it is obtainable with formula $_{..(i)}$. It is common to substitute this formula into the formula for the sum as follows:

\n

$S_n=\\frac{n}{2}(a_1+a_1+d(n-1))$

\n

$\\therefore\\;\\;\\;S_n=\\frac{n}{2}(2a_1+d(n-1))$    $_{..(iv)}$

\n

We identify the variables which we know, namely: $n=\\var{tsum}$,    $a_1=\\var{t1}$,    $d=\\var{d}$

\n

They are substituted into $_{..(iv)}$ and solved for $S_n$:

\n

$S_\\var{tsum}=\\frac{\\var{tsum}}{2}(2\\times\\var{t1}+\\var{d}(\\var{tsum}-1))$

\n

Part c)

\n

To determine the least value of $n$ for which the sum of the first $n$ terms of the series exceeds $1000$, the sum formula $_{..(iv)}$ is set up with the lower limit value of $1000$ substituted in:

\n

$1000=\\frac{n}{2}(2\\times\\var{t1}+\\var{d}(n-1))$

\n

It is then expanded algebraically to give the following quadratic:

\n

$\\simplify{{d}/2}n^2+\\simplify{{2*{t1}-{d}}/2}n-1000=0$

\n

$n$ can then be found using the quadratic formula:

\n

$n=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$    where $a=\\simplify{{d}/2}$,    $b=\\simplify{{2*{t1}-{d}}/2}$   and $c=-1000$

\n

Thus,

\n

$n=\\frac{-\\var{b}\\pm\\sqrt{(\\var{b})^2-\\simplify{{-1000*4*{a}}}}}{\\simplify{2*{a}}}$

\n

$\\therefore\\;\\;\\;n=-\\left(\\simplify{{2*{t1}-{d}}/{2*2*{a}}}\\right)\\pm\\left(\\frac{\\sqrt{\\simplify{{bsq}-{-1000*4*{a}}}}}{\\simplify{2*{a}}}\\right)$

\n

In this context, we are talking of positive $n^{th}$ terms, so we disregard the negative square root.

\n

The result is then computed to be: $\\var{nc}$

\n

If this is the value of $n$ which produces $1000$, it follows that the next whole number will be the least value of $n$ for which the sum of the first $n$ terms of the series exceeds $1000$.

", "extensions": [], "showQuestionGroupNames": false, "contributors": [{"name": "Jinhua Mathias", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Jinhua Mathias", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}