// Numbas version: finer_feedback_settings {"name": "Resolve a force into $x$ and $y$ components", "extensions": [], "custom_part_types": [], "resources": [["question-resources/force_component_image.png", "/srv/numbas/media/question-resources/force_component_image.png"], ["question-resources/force_component_image_PgpiR1U.png", "/srv/numbas/media/question-resources/force_component_image_PgpiR1U.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "

a)

\n

The component of force in the $x$-direction can be found using $F \\times \\cos\\theta$. Remember to set your calculator to use degrees and not radians.

\n

\\begin{align} \\text{component in the }x \\text{-direction } & = F \\cos \\theta \\\\
                    & = \\var{force} \\times \\cos \\var{angle} \\\\
                     & = \\var{precround(force*cos(radians(angle)),3)}\\end{align}

\n

b)

\n

Now we need to make sure we find the angle between the force and the direction we are resolving in. Therefore $\\theta = 90 - \\var{angle} = \\var{yangle}$.

\n

\\begin{align} \\text{component in the y-direction } & = F \\cos \\theta \\\\
                    & = \\var{force} \\times \\cos \\var{yangle} \\\\
                     & = \\var{precround(force*cos(radians(yangle)),3)}\\end{align}

\n

Since $\\sin \\theta = \\cos(90-\\theta)$, we could also use $\\sin \\var{angle}$ in our calculations instead of $\\cos(90 - \\var{angle})$.

", "parts": [{"precision": "3", "correctAnswerFraction": false, "minValue": "force*cos(radians(angle))", "variableReplacements": [], "showCorrectAnswer": true, "prompt": "

Find the component of the force in the $x$-direction, in Newtons to 3 decimal places.

", "type": "numberentry", "maxValue": "force*cos(radians(angle))", "allowFractions": false, "marks": 1, "strictPrecision": false, "precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "variableReplacementStrategy": "originalfirst", "scripts": {}, "showPrecisionHint": false, "precisionPartialCredit": 0}, {"precision": "3", "correctAnswerFraction": false, "minValue": "force*cos(radians(yangle))", "variableReplacements": [], "showCorrectAnswer": true, "prompt": "

Find the component of the force in the $y$-direction, in Newtons to 3 decimal places.

", "type": "numberentry", "maxValue": "force*cos(radians(yangle))", "allowFractions": false, "marks": 1, "strictPrecision": false, "precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "variableReplacementStrategy": "originalfirst", "scripts": {}, "showPrecisionHint": false, "precisionPartialCredit": 0}], "variable_groups": [], "ungrouped_variables": ["force", "angle", "yangle"], "rulesets": {}, "name": "Resolve a force into $x$ and $y$ components", "extensions": [], "tags": [], "type": "question", "functions": {}, "preamble": {"css": "", "js": ""}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "questions": [], "pickQuestions": 0}], "variablesTest": {"condition": "", "maxRuns": 100}, "metadata": {"description": "

Find the $x$ and $y$ components of a force which is applied at an angle to a particle. Resolve using $F \\cos \\theta$. The force acts in the positive $x$ and positive $y$ direction.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

\n

In the above diagram the force $F=\\var{force} \\ \\mathrm{N}$ and the angle $\\theta = \\var{angle}^{\\circ}$.

", "variables": {"force": {"templateType": "randrange", "definition": "random(3..15#0.5)", "description": "", "group": "Ungrouped variables", "name": "force"}, "angle": {"templateType": "randrange", "definition": "random(1..89#1)", "description": "", "group": "Ungrouped variables", "name": "angle"}, "yangle": {"templateType": "anything", "definition": "90-angle", "description": "", "group": "Ungrouped variables", "name": "yangle"}}, "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}