// Numbas version: exam_results_page_options {"name": "Plot the graph of a quadratic function", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "", "parts": [{"displayColumns": 0, "shuffleChoices": false, "variableReplacements": [], "showCorrectAnswer": true, "prompt": "

The graph of this function is:

", "minMarks": 0, "matrix": ["if(a>0,1,0)", "if(a>0,0,1)"], "displayType": "radiogroup", "choices": ["

An upwards-opening parabola

", "

A downwards-opening parabola

"], "marks": 0, "distractors": ["", ""], "scripts": {}, "type": "1_n_2", "variableReplacementStrategy": "originalfirst", "maxMarks": 1}, {"prompt": "

Fill in the table of values for \$y=\\simplify[std]{{a}x^2+{c}}\$:

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
\$x\$\$-3\$\$-2\$\$-1\$\$0\$\$1\$\$2\$\$3\$
\$y\$[[0]][[1]][[2]][[3]][[4]][[5]][[6]]
\n

Slide the points to the correct \$y\$ values.

\n

Give the coordinates of the turning point of the parabola: \$\\bigg(\$[[0]]\$, \$ [[1]]\$\\bigg)\$

", "notes": "

Adapted from a question written in Dutch by Carolijn Tacken.

\n

Disconnected the graph from the answer fields.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

You are given the quadratic function \$y=\\simplify[std]{{a}x^2+{c}}\$

", "variables": {"c": {"templateType": "anything", "definition": "random(-4..4 except 0)", "description": "", "group": "Ungrouped variables", "name": "c"}, "values": {"templateType": "anything", "definition": "map(a*x^2+c,x,-3..3)", "description": "", "group": "Ungrouped variables", "name": "values"}, "a": {"templateType": "anything", "definition": "random(-2,-1,-0.5,0.5,1,2)", "description": "", "group": "Ungrouped variables", "name": "a"}}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}