// Numbas version: exam_results_page_options {"name": "Paul 's copy of Max and Min 6", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variables": {"l": {"name": "l", "group": "Ungrouped variables", "definition": "if(l1=c,l1+1,l1)", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "round(2b/a)+random(1..9)", "description": "", "templateType": "anything"}, "l1": {"name": "l1", "group": "Ungrouped variables", "definition": "round((u*(c+1)+(100-u)*round(statpoint-1))/100)", "description": "", "templateType": "anything"}, "tol": {"name": "tol", "group": "Ungrouped variables", "definition": "0.001", "description": "", "templateType": "anything"}, "s": {"name": "s", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "valsd": {"name": "valsd", "group": "Ungrouped variables", "definition": "precround(2*(2*b/a-1)^(a/b+2)/c^(a/b),3)", "description": "", "templateType": "anything"}, "u": {"name": "u", "group": "Ungrouped variables", "definition": "random(0..90)", "description": "", "templateType": "anything"}, "lma": {"name": "lma", "group": "Ungrouped variables", "definition": "if(a>0,b,-b)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(3,5,7)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "if(b=3,random(1,2,4,5),if(b=5,random(1,2,3,4,6,7,8,9),random(2,3,4,5,6,8,9)))", "description": "", "templateType": "anything"}, "valbegin": {"name": "valbegin", "group": "Ungrouped variables", "definition": "precround(l^2/(l-c)^(a/b),3)", "description": "", "templateType": "anything"}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "round(statpoint)+random(2..6)", "description": "", "templateType": "anything"}, "statpoint": {"name": "statpoint", "group": "Ungrouped variables", "definition": "2*b*c/(2*b-a)", "description": "", "templateType": "anything"}, "valend": {"name": "valend", "group": "Ungrouped variables", "definition": "precround(m^2/(m-c)^(a/b),3)", "description": "", "templateType": "anything"}, "lmi": {"name": "lmi", "group": "Ungrouped variables", "definition": "if(a<0,b,-b)", "description": "", "templateType": "anything"}, "valmin": {"name": "valmin", "group": "Ungrouped variables", "definition": "precround(statpoint^2/(statpoint-c)^(a/b),3)", "description": "", "templateType": "anything"}, "xmi": {"name": "xmi", "group": "Ungrouped variables", "definition": "lmi", "description": "", "templateType": "anything"}, "xma": {"name": "xma", "group": "Ungrouped variables", "definition": "if(valend>valbegin,m,l)", "description": "", "templateType": "anything"}}, "advice": "\n

The function $g(x)$ is continuous and differentiable at all points in $\\mathbb{R}$ as $ \\var{c} \\notin I$.

\n

On differentiating we see that
\\[\\begin{eqnarray*}g'(x)&=&\\simplify{2*x/(x-{c})^({a}/{b}) - {a}*x^2/({b}(x-{c})^({a+b}/{b}))}\\\\ &=&\\simplify{({2*b}x*(x-{c})-{a}*x^2)/({b}(x-{c})^({a+b}/{b}))}\\\\ &=&\\simplify{(x*({2*b-a}x-{2*b*c}))/({b}(x-{c})^({a+b}/{b}))} \\end{eqnarray*} \\]

\n

Stationary Points.

\n

The stationary points are given by solving $g'(x)=0$.

\n

$\\displaystyle g'(x)=0 \\Rightarrow \\simplify{x*({2*b-a}x-{2*b*c})=0} \\Rightarrow x=0 \\mbox{ or } x=\\simplify[std]{{2*b*c}/{2*b-a}}$

\n

We see that $\\displaystyle x=\\simplify[std]{{2*b*c}/{2*b-a}}$ is the only stationary point in $I$.

\n

The second derivative can be found by applying the quotient rule to the derivative of $g(x)$ and we obtain:

\n

Using the quotient rule for differentiation we see that
\\[g''(x)=\\simplify[std]{({a^2-3*a*b+2*b^2}*x^2+{4*b*c*(a-b)}*x+{2*c^2*b^2})/({b^2}(x-{c})^({a+2*b}/{b}))}\\]

\n

Hence \\[r(x)=\\simplify[std]{({a^2-3*a*b+2*b^2}*x^2+{4*b*c*(a-b)}*x+{2*c^2*b^2})}\\]

\n

The nature of the stationary points are determined by evaluating $g''(x)$ at the stationary points.

\n

There is only one stationary point $\\displaystyle  x=\\simplify[std]{{2*b*c}/{2*b-a}}$ in $I$ and at that point we have:
\\[g''\\left(\\simplify[std]{{2*b*c}/{2*b-a}}\\right)=\\var{valsd} \\gt 0\\]

\n

Hence this point is a local minimum.

\n

Evaluating at end points of the interval.

\n

The values of $g$ at the endpoints are:

\n

$g(\\var{l})=\\var{valbegin}$ and $g(\\var{m})=\\var{valend}$, both to 3 decimal places.

\n

Global Maximum and Minimum

\n

Global Maximum: Since $g$ does not have a local maximum in the interval $I$, it must take a global maximum value at one of the end points of the interval.

\n

From the values found for $g(\\var{l})$ and $g(\\var{m})$ found above, we see that $x=\\var{xma}$ is the global maximum for $g$ in the interval $I$.

\n

Global Minimum: The local minimum of $g$ given by $ \\displaystyle x=\\simplify[std]{{2*b*c}/{2*b-a}} \\in I$ is the only local minimum and must be a global minimum in $I$.

\n

Note that the global minimum value for $g$ on $I$ is:

\n

\\[g\\left(\\simplify[std]{{2*b*c}/{2*b-a}}\\right)=\\var{valmin}\\]

\n ", "variablesTest": {"condition": "", "maxRuns": 100}, "extensions": [], "name": "Paul 's copy of Max and Min 6", "parts": [{"unitTests": [], "useCustomName": false, "marks": 0, "maxMarks": 0, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "displayType": "radiogroup", "minMarks": 0, "distractors": ["", ""], "showCellAnswerState": true, "showFeedbackIcon": true, "customMarkingAlgorithm": "", "choices": ["

Yes

", "

No

"], "scripts": {}, "displayColumns": 0, "variableReplacements": [], "customName": "", "prompt": "\n

Is $g(x)$ continuous at all points of $I$?

\n \n

Choose Yes or No.

\n \n ", "matrix": [1, 0], "shuffleChoices": false, "type": "1_n_2", "variableReplacementStrategy": "originalfirst"}, {"customMarkingAlgorithm": "", "useCustomName": false, "scripts": {}, "marks": 0, "variableReplacements": [], "gaps": [{"checkingType": "absdiff", "useCustomName": false, "answerSimplification": "std", "marks": 1, "checkingAccuracy": 0.001, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "checkVariableNames": false, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "type": "jme", "showFeedbackIcon": true, "customMarkingAlgorithm": "", "valuegenerators": [{"name": "x", "value": ""}], "showPreview": true, "scripts": {}, "variableReplacements": [], "customName": "", "unitTests": [], "answer": "x*({2*b-a}*x-{2*b*c})", "variableReplacementStrategy": "originalfirst"}], "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "customName": "", "sortAnswers": false, "prompt": "\n

The first derivative of $g$ can be written in the form $\\displaystyle \\frac{p(x)}{q(x)}$ where $p(x)$ is a polynomial of degree $2$ and $q(x)=\\simplify{{b}*(x-{c})^({a+b}/{b})}$.

\n

Input the numerator $p(x)$ of the first derivative of $g$ here:

\n

$p(x)=\\;\\;$[[0]]

\n ", "unitTests": [], "variableReplacementStrategy": "originalfirst", "type": "gapfill", "showFeedbackIcon": true}, {"unitTests": [], "useCustomName": false, "marks": 0, "maxMarks": 0, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "displayType": "radiogroup", "minMarks": 0, "distractors": ["", ""], "showCellAnswerState": true, "showFeedbackIcon": true, "customMarkingAlgorithm": "", "choices": ["

Yes

", "

No

"], "scripts": {}, "displayColumns": 0, "variableReplacements": [], "customName": "", "prompt": "\n

Is $g(x)$ differentiable at all interior points of $I$?

\n \n

Choose Yes or No.

\n \n ", "matrix": [1, 0], "shuffleChoices": true, "type": "1_n_2", "variableReplacementStrategy": "originalfirst"}, {"customMarkingAlgorithm": "", "useCustomName": false, "scripts": {}, "marks": 0, "variableReplacements": [], "gaps": [{"checkingType": "absdiff", "useCustomName": false, "answerSimplification": "std", "marks": 1, "checkingAccuracy": 0.001, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "checkVariableNames": false, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "type": "jme", "showFeedbackIcon": true, "customMarkingAlgorithm": "", "valuegenerators": [], "showPreview": true, "scripts": {}, "variableReplacements": [], "customName": "", "unitTests": [], "answer": "{0}", "variableReplacementStrategy": "originalfirst"}, {"checkingType": "absdiff", "useCustomName": false, "answerSimplification": "std", "marks": 1, "checkingAccuracy": 0.001, "notallowed": {"message": "

Input as a fraction or an integer and not as a decimal

", "strings": ["."], "partialCredit": 0, "showStrings": false}, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "checkVariableNames": false, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "type": "jme", "showFeedbackIcon": true, "customMarkingAlgorithm": "", "valuegenerators": [], "showPreview": true, "scripts": {}, "variableReplacements": [], "customName": "", "unitTests": [], "answer": "{2*b*c}/{2*b-a}", "variableReplacementStrategy": "originalfirst"}, {"displayColumns": 0, "customMarkingAlgorithm": "", "matrix": [1, 0], "choices": ["

The greatest

", "

The least

"], "useCustomName": false, "scripts": {}, "marks": 0, "variableReplacements": [], "maxMarks": 0, "displayType": "radiogroup", "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "customName": "", "showCellAnswerState": true, "unitTests": [], "shuffleChoices": true, "minMarks": 0, "distractors": ["", ""], "variableReplacementStrategy": "originalfirst", "type": "1_n_2", "showFeedbackIcon": true}], "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "customName": "", "sortAnswers": false, "prompt": "\n

Assume now that $g$ is a function $g:\\mathbb{R} \\backslash \\{\\var{c}\\} \\rightarrow \\mathbb{R}$.

\n \n

Find the stationary points of $g$.

\n \n

Least stationary point: [[0]]

\n \n

Greatest stationary point: [[1]] (Input as a fraction or an integer and not as a decimal)

\n \n

Which stationary point is in the interval $I$? Choose one of the following:
[[2]]

\n \n ", "unitTests": [], "variableReplacementStrategy": "originalfirst", "type": "gapfill", "showFeedbackIcon": true}, {"customMarkingAlgorithm": "", "useCustomName": false, "scripts": {}, "marks": 0, "variableReplacements": [], "gaps": [{"checkingType": "absdiff", "useCustomName": false, "answerSimplification": "std", "marks": 1, "checkingAccuracy": 0.001, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "checkVariableNames": false, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "type": "jme", "showFeedbackIcon": true, "customMarkingAlgorithm": "", "valuegenerators": [{"name": "x", "value": ""}], "showPreview": true, "scripts": {}, "variableReplacements": [], "customName": "", "unitTests": [], "answer": "{a^2-3*a*b+2*b^2}*x^2+{4*b*c*(a-b)}*x+{2*c^2*b^2}", "variableReplacementStrategy": "originalfirst"}, {"displayColumns": 0, "customMarkingAlgorithm": "", "matrix": [0, 1], "choices": ["

Local maximum

", "

Local minimum

"], "useCustomName": false, "scripts": {}, "marks": 0, "variableReplacements": [], "maxMarks": 0, "displayType": "radiogroup", "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "customName": "", "showCellAnswerState": true, "unitTests": [], "shuffleChoices": true, "minMarks": 0, "distractors": ["", ""], "variableReplacementStrategy": "originalfirst", "type": "1_n_2", "showFeedbackIcon": true}], "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "customName": "", "sortAnswers": false, "prompt": "\n

The second derivative of $g$ can be written in the form $\\displaystyle \\frac{r(x)}{s(x)}$ where $r(x)$ is a quadratic polynomial and $s(x)=\\simplify{{b^2}(x-{c})^({a+2*b}/{b})}$.

\n

Input the numerator $r(x)$ of the second derivative of $g$ here:

\n

$r(x)=\\;\\;$ [[0]]

\n

Hence determine the type of the stationary point which lies in $I$. Choose one of the following:
[[1]]

\n ", "unitTests": [], "variableReplacementStrategy": "originalfirst", "type": "gapfill", "showFeedbackIcon": true}, {"customMarkingAlgorithm": "", "useCustomName": false, "scripts": {}, "marks": 0, "variableReplacements": [], "gaps": [{"correctAnswerFraction": false, "correctAnswerStyle": "plain", "customMarkingAlgorithm": "", "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "useCustomName": false, "scripts": {}, "marks": 1, "variableReplacements": [], "allowFractions": false, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "customName": "", "mustBeReduced": false, "unitTests": [], "maxValue": "valbegin+tol", "showFractionHint": true, "minValue": "valbegin-tol", "variableReplacementStrategy": "originalfirst", "type": "numberentry", "showFeedbackIcon": true}, {"correctAnswerFraction": false, "correctAnswerStyle": "plain", "customMarkingAlgorithm": "", "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "useCustomName": false, "scripts": {}, "marks": 1, "variableReplacements": [], "allowFractions": false, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "customName": "", "mustBeReduced": false, "unitTests": [], "maxValue": "valend+tol", "showFractionHint": true, "minValue": "valend-tol", "variableReplacementStrategy": "originalfirst", "type": "numberentry", "showFeedbackIcon": true}], "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "customName": "", "sortAnswers": false, "prompt": "\n

What are the following values at the end points of the interval $I$ ?

\n \n

$g(\\var{l})=\\;\\;$ [[0]]

\n \n

$g(\\var{m})=\\;\\;$ [[1]]

\n \n

Input both to 3 decimal places.

\n \n ", "unitTests": [], "variableReplacementStrategy": "originalfirst", "type": "gapfill", "showFeedbackIcon": true}, {"customMarkingAlgorithm": "", "useCustomName": false, "scripts": {}, "marks": 0, "variableReplacements": [], "gaps": [{"correctAnswerFraction": false, "correctAnswerStyle": "plain", "customMarkingAlgorithm": "", "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "useCustomName": false, "scripts": {}, "marks": 1, "variableReplacements": [], "allowFractions": false, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "customName": "", "mustBeReduced": false, "unitTests": [], "maxValue": "{xma}", "showFractionHint": true, "minValue": "{xma}", "variableReplacementStrategy": "originalfirst", "type": "numberentry", "showFeedbackIcon": true}, {"checkingType": "absdiff", "useCustomName": false, "answerSimplification": "std", "marks": 1, "checkingAccuracy": 0.001, "notallowed": {"message": "

Input as a fraction or an integer and not as a decimal

", "strings": ["."], "partialCredit": 0, "showStrings": false}, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "checkVariableNames": false, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "type": "jme", "showFeedbackIcon": true, "customMarkingAlgorithm": "", "valuegenerators": [], "showPreview": true, "scripts": {}, "variableReplacements": [], "customName": "", "unitTests": [], "answer": "{2*b*c}/{2*b-a}", "variableReplacementStrategy": "originalfirst"}], "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "customName": "", "sortAnswers": false, "prompt": "\n

Global Maximum

\n \n

At what value of $x \\in I$ does $g$ have a global maximum in $I$?

\n \n

$x=\\;\\;$ [[0]]

\n \n

Global Minimum

\n \n

At what value of $x \\in I$ does $g$ have a global minimum in $I$ ?

\n \n

$x=\\;\\;$ [[1]] (Input as a fraction or an integer and not as a decimal)

\n \n ", "unitTests": [], "variableReplacementStrategy": "originalfirst", "type": "gapfill", "showFeedbackIcon": true}], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "variable_groups": [], "statement": "\n

Let $I=[\\var{l},\\var{m}]$ be an interval and let $g: I \\rightarrow \\mathbb{R}$ be the function given by:
\\[g(x)=\\simplify{x^2/(x-{c})^({a}/{b})}\\]

\n

Answer the following questions. There are seven parts and you may need to scroll down to complete all parts.

\n

 

\n ", "metadata": {"description": "

$I$ compact interval. $\\displaystyle g: I\\rightarrow I, g(x)=\\frac{x^2}{(x-c)^{a/b}}$. Are there stationary points and local maxima, minima? Has $g$ a global max, global min? 

", "licence": "Creative Commons Attribution 4.0 International"}, "preamble": {"css": "", "js": ""}, "functions": {}, "tags": [], "ungrouped_variables": ["a", "c", "b", "valmin", "m", "l", "xma", "lmi", "s", "u", "valend", "tol", "l1", "valbegin", "lma", "statpoint", "xmi", "valsd"], "contributors": [{"name": "Paul Howes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/632/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Paul Howes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/632/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}