// Numbas version: exam_results_page_options {"name": "Paul 's copy of Max and Min 4", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"extensions": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

$g: \\mathbb{R} \\rightarrow \\mathbb{R}, g(x)=\\frac{ax}{x^2+b^2}$. Find stationary points and local maxima, minima. Using limits, has $g$ a global max, min? 

"}, "statement": "

Let $g: \\mathbb{R} \\rightarrow \\mathbb{R}$ be the function given by:
\\[g(x)=\\simplify{{a}*x/(x^2+{b}^2)}\\]

", "functions": {}, "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "variablesTest": {"condition": "", "maxRuns": 100}, "variables": {"b": {"templateType": "anything", "name": "b", "description": "", "group": "Ungrouped variables", "definition": "random(1..9)"}, "lma": {"templateType": "anything", "name": "lma", "description": "", "group": "Ungrouped variables", "definition": "if(a>0,b,-b)"}, "s": {"templateType": "anything", "name": "s", "description": "", "group": "Ungrouped variables", "definition": "random(1,-1)"}, "valmax": {"templateType": "anything", "name": "valmax", "description": "", "group": "Ungrouped variables", "definition": "-valmin"}, "tol": {"templateType": "anything", "name": "tol", "description": "", "group": "Ungrouped variables", "definition": "0.001"}, "valmin": {"templateType": "anything", "name": "valmin", "description": "", "group": "Ungrouped variables", "definition": "precround(-abs(a)*b/(2*b^2),3)"}, "lmi": {"templateType": "anything", "name": "lmi", "description": "", "group": "Ungrouped variables", "definition": "if(a<0,b,-b)"}, "a": {"templateType": "anything", "name": "a", "description": "", "group": "Ungrouped variables", "definition": "s*random(1..9)"}}, "ungrouped_variables": ["a", "b", "valmin", "valmax", "lmi", "s", "tol", "lma"], "tags": [], "preamble": {"js": "", "css": ""}, "variable_groups": [], "advice": "\n

The function $g(x)$ is continuous and differentiable at all points in $\\mathbb{R}$.

\n

Using the quotient rule for differentiation we see that
\\[\\begin{eqnarray*}g'(x)&=&\\simplify{({a}*(x^2+{b^2})-{2*a}*x^2)/(x^2+{b^2})^2}\\\\ &=&\\simplify{({-a}*(x-{b})(x+{b}))/(x^2+{b^2})^2} \\end{eqnarray*} \\]

\n

Stationary Points.

\n

The stationary points are given by solving $g'(x)=0$.

\n

$g'(x)=0 \\Rightarrow \\simplify{{-a}*(x-{b})(x+{b})=0} \\Rightarrow x=\\var{b} \\mbox{ or } x=\\var{-b}$

\n

The second derivative can be found by applying the quotient rule to the derivative of $g(x)$ and we obtain:

\n

Using the quotient rule for differentiation we see that
\\[\\begin{eqnarray*}g''(x)&=&\\simplify[std]{({-2*a}*x*(x^2+{b^2})^2+{4*a}*x*(x^2-{b^2})(x^2+{b^2}))/(x^2+{b^2})^4}\\\\ &=&\\simplify[std]{({2*a}*x*(x^2-{3*b^2}))/(x^2+{b^2})^3} \\end{eqnarray*} \\]

\n

The nature of the stationary points are determined by evaluating $g''(x)$ at the stationary points.

\n

For $x= \\var{lma}$ we have: \\[g''(\\var{lma})= \\simplify[std]{-{abs(a)}/{2*b^3}} \\lt 0\\]

\n

Hence is a local maximum.

\n

Evaluating the function at $x=\\var{lma}$ gives $g(\\var{lma})=\\var{valmax}$ to 3 decimal places.

\n

For $x= \\var{lmi}$ we have: \\[g''(\\var{lmi})= \\simplify[std]{{abs(a)}/{2*b^3}} \\gt 0\\]

\n

Hence is a local minimum.

\n

Evaluating the function at $x=\\var{lmi}$ gives $g(\\var{lmi})=\\var{valmin}$ to 3 decimal places.

\n

The Limits.

\n

If we divide $g(x)$ top and bottom by $x^2$ (OK as $x \\neq 0$ at any time) we obtain: \\[g(x)=\\simplify[std]{({a}/x)/(1+{b^2}/x^2)}\\]

\n

Then using the fact that $\\displaystyle \\frac{1}{x}$ and $\\displaystyle \\frac{1}{x^2}$ both tend to $0$ as $ x \\rightarrow \\pm\\infty$ we see that

\n

$\\displaystyle \\lim_{x \\to \\infty}g(x)=\\frac{0}{1}=0$ and similarly

\n

$\\lim_{x \\to -\\infty}g(x)=0$

\n

Global Maximum and Minimum

\n

Since $g$ has a finite limit of $0$ as $x \\rightarrow \\pm\\infty$ and we have that $0$ lies between the local minimum $\\var{valmin}$ and the local maximum $\\var{valmax}$

\n

Then:

\n

Global Maximum: The local maximum of $g$ we have found at $x=\\var{lma}$ must be a global maximum and similarly,

\n

Global Minimum: The local minimum of $g$ we have found at $x=\\var{lmi}$ must be a global minimum.

\n

So we have shown \\[\\forall x \\in \\mathbb{R},\\;\\;\\var{valmin} \\le g(x) \\le \\var{valmax}\\]

\n ", "name": "Paul 's copy of Max and Min 4", "parts": [{"matrix": [1, 0], "showCorrectAnswer": true, "marks": 0, "useCustomName": false, "choices": ["

Yes

", "

No

"], "scripts": {}, "customName": "", "type": "1_n_2", "displayColumns": 0, "showCellAnswerState": true, "minMarks": 0, "showFeedbackIcon": true, "displayType": "radiogroup", "prompt": "\n

Is $g(x)$ continuous at all points of $\\mathbb{R}$?

\n \n

Choose Yes or No.

\n \n ", "distractors": ["", ""], "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "shuffleChoices": false, "extendBaseMarkingAlgorithm": true, "maxMarks": 0, "customMarkingAlgorithm": "", "unitTests": []}, {"gaps": [{"showCorrectAnswer": true, "marks": 1, "variableReplacements": [], "valuegenerators": [{"value": "", "name": "x"}], "notallowed": {"partialCredit": 0, "strings": ["^", "x*x", "xx", "x x"], "showStrings": false, "message": "

Factorise the expression

"}, "useCustomName": false, "scripts": {}, "customName": "", "type": "jme", "checkingType": "absdiff", "musthave": {"partialCredit": 0, "strings": ["(", ")"], "showStrings": false, "message": "

Factorise the expression

"}, "variableReplacementStrategy": "originalfirst", "vsetRangePoints": 5, "showFeedbackIcon": true, "checkVariableNames": false, "vsetRange": [0, 1], "showPreview": true, "checkingAccuracy": 0.001, "answerSimplification": "std", "failureRate": 1, "answer": "({( - a)} * (x + ( - {b})) * (x + {b}))", "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "unitTests": []}], "sortAnswers": false, "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 0, "prompt": "\n

The first derivative of $g$ can be written in the form $\\displaystyle \\frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)=(x^2+\\var{b^2})^2$ are polynomials.

\n

Input the numerator $p(x)$ of the first derivative of $g$ here, factorised into a product of two linear factors in the form
\\[p(x)=c(x-a)(x-b)\\]for suitable integers $a$, $b$ and $c$:

\n

$p(x)\\;=\\;$[[0]]

\n ", "variableReplacementStrategy": "originalfirst", "type": "gapfill", "scripts": {}, "customName": "", "variableReplacements": [], "useCustomName": false, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "unitTests": []}, {"matrix": [1, 0], "showCorrectAnswer": true, "marks": 0, "useCustomName": false, "choices": ["

Yes

", "

No

"], "scripts": {}, "customName": "", "type": "1_n_2", "displayColumns": 0, "showCellAnswerState": true, "minMarks": 0, "showFeedbackIcon": true, "displayType": "radiogroup", "prompt": "\n

Is $g(x)$ differentiable at all points of $\\mathbb{R}$?

\n \n

Choose Yes or No.

\n \n ", "distractors": ["", ""], "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "shuffleChoices": true, "extendBaseMarkingAlgorithm": true, "maxMarks": 0, "customMarkingAlgorithm": "", "unitTests": []}, {"gaps": [{"showCorrectAnswer": true, "marks": 1, "variableReplacements": [], "valuegenerators": [], "useCustomName": false, "scripts": {}, "customName": "", "type": "jme", "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "vsetRangePoints": 5, "showFeedbackIcon": true, "checkVariableNames": false, "vsetRange": [0, 1], "showPreview": true, "checkingAccuracy": 0.001, "answerSimplification": "std", "failureRate": 1, "answer": "{-b}", "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "unitTests": []}, {"showCorrectAnswer": true, "marks": 1, "variableReplacements": [], "valuegenerators": [], "useCustomName": false, "scripts": {}, "customName": "", "type": "jme", "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "vsetRangePoints": 5, "showFeedbackIcon": true, "checkVariableNames": false, "vsetRange": [0, 1], "showPreview": true, "checkingAccuracy": 0.001, "answerSimplification": "std", "failureRate": 1, "answer": "{b}", "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "unitTests": []}], "sortAnswers": false, "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 0, "prompt": "\n

Find the stationary points of $g$.

\n \n

Least stationary point: [[0]]

\n \n

Greatest stationary point: [[1]]

\n \n ", "variableReplacementStrategy": "originalfirst", "type": "gapfill", "scripts": {}, "customName": "", "variableReplacements": [], "useCustomName": false, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "unitTests": []}, {"gaps": [{"showCorrectAnswer": true, "marks": 1, "variableReplacements": [], "valuegenerators": [{"value": "", "name": "x"}], "notallowed": {"partialCredit": 0, "strings": ["x^3"], "showStrings": false, "message": "

Factorise the expression as asked in the question.

"}, "useCustomName": false, "scripts": {}, "customName": "", "type": "jme", "checkingType": "absdiff", "musthave": {"partialCredit": 0, "strings": ["(", ")"], "showStrings": false, "message": "

Factorise the expression

"}, "variableReplacementStrategy": "originalfirst", "vsetRangePoints": 5, "showFeedbackIcon": true, "checkVariableNames": false, "vsetRange": [0, 1], "showPreview": true, "checkingAccuracy": 0.001, "answerSimplification": "std", "failureRate": 1, "answer": "{2*a}*x*(x^2-{3*b^2})", "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "unitTests": []}, {"showCorrectAnswer": true, "marks": 1, "variableReplacements": [], "valuegenerators": [], "useCustomName": false, "scripts": {}, "customName": "", "type": "jme", "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "vsetRangePoints": 5, "showFeedbackIcon": true, "checkVariableNames": false, "vsetRange": [0, 1], "showPreview": true, "checkingAccuracy": 0.001, "answerSimplification": "std", "failureRate": 1, "answer": "{lma}", "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "unitTests": []}, {"mustBeReducedPC": 0, "correctAnswerFraction": false, "maxValue": "{valmax+tol}", "showFeedbackIcon": true, "showCorrectAnswer": true, "showFractionHint": true, "marks": 1, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "minValue": "{valmax-tol}", "variableReplacementStrategy": "originalfirst", "type": "numberentry", "scripts": {}, "customName": "", "correctAnswerStyle": "plain", "variableReplacements": [], "useCustomName": false, "allowFractions": false, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "unitTests": []}, {"showCorrectAnswer": true, "marks": 1, "variableReplacements": [], "valuegenerators": [], "useCustomName": false, "scripts": {}, "customName": "", "type": "jme", "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "vsetRangePoints": 5, "showFeedbackIcon": true, "checkVariableNames": false, "vsetRange": [0, 1], "showPreview": true, "checkingAccuracy": 0.001, "answerSimplification": "std", "failureRate": 1, "answer": "{lmi}", "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "unitTests": []}, {"mustBeReducedPC": 0, "correctAnswerFraction": false, "maxValue": "{valmin+tol}", "showFeedbackIcon": true, "showCorrectAnswer": true, "showFractionHint": true, "marks": 1, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "minValue": "{valmin-tol}", "variableReplacementStrategy": "originalfirst", "type": "numberentry", "scripts": {}, "customName": "", "correctAnswerStyle": "plain", "variableReplacements": [], "useCustomName": false, "allowFractions": false, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "unitTests": []}], "sortAnswers": false, "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 0, "prompt": "\n

The second derivative of $g$ can be written in the form $\\displaystyle \\frac{r(x)}{s(x)}$ where $r(x)$ and $s(x)=(x^2+\\var{b^2})^3$ are polynomials.

\n

Input the numerator $r(x)$ of the second derivative of $g$ here, factorised into a product of a linear factor and a quadratic factor in the form
\\[r(x)=a_1x(x^2-a_2)\\] for suitable integers $a_1$, $a_2$

\n

$r(x)=\\;\\;$ [[0]]

\n

Hence find all local maxima and minima given by the stationary points

\n

Local maximum is at $x=\\;\\;$ [[1]] and the value of the function at the local maximum (to 3 decimal places)= [[2]]

\n

Local minimum is at $x=\\;\\;$ [[3]] and the value of the function at the local minimum (to 3 decimal places) = [[4]]

\n ", "variableReplacementStrategy": "originalfirst", "type": "gapfill", "scripts": {}, "customName": "", "variableReplacements": [], "useCustomName": false, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "unitTests": []}, {"gaps": [{"displayColumns": 0, "matrix": [0, 0, 0, 0, 1], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 0, "displayType": "radiogroup", "distractors": ["", "", "", "", ""], "variableReplacementStrategy": "originalfirst", "type": "1_n_2", "choices": ["

$-\\infty$

", "

$\\infty$

", "

$\\var{b}$

", "

$\\var{valmax}$

", "

$0$

"], "scripts": {}, "customName": "", "variableReplacements": [], "useCustomName": false, "shuffleChoices": true, "extendBaseMarkingAlgorithm": true, "minMarks": 0, "maxMarks": 0, "customMarkingAlgorithm": "", "showCellAnswerState": true, "unitTests": []}, {"displayColumns": 0, "matrix": [0, 0, 0, 0, 1], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 0, "displayType": "radiogroup", "distractors": ["", "", "", "", ""], "variableReplacementStrategy": "originalfirst", "type": "1_n_2", "choices": ["

$-\\infty$

", "

$\\infty$

", "

$\\var{a}$

", "

$\\var{valmin}$

", "

$0$

"], "scripts": {}, "customName": "", "variableReplacements": [], "useCustomName": false, "shuffleChoices": true, "extendBaseMarkingAlgorithm": true, "minMarks": 0, "maxMarks": 0, "customMarkingAlgorithm": "", "showCellAnswerState": true, "unitTests": []}, {"displayColumns": 0, "matrix": [1, 0], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 0, "displayType": "radiogroup", "distractors": ["", ""], "variableReplacementStrategy": "originalfirst", "type": "1_n_2", "choices": ["

Yes

", "

No

"], "scripts": {}, "customName": "", "variableReplacements": [], "useCustomName": false, "shuffleChoices": true, "extendBaseMarkingAlgorithm": true, "minMarks": 0, "maxMarks": 0, "customMarkingAlgorithm": "", "showCellAnswerState": true, "unitTests": []}, {"displayColumns": 0, "matrix": [1, 0], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 0, "displayType": "radiogroup", "distractors": ["", ""], "variableReplacementStrategy": "originalfirst", "type": "1_n_2", "choices": ["

Yes

", "

No

"], "scripts": {}, "customName": "", "variableReplacements": [], "useCustomName": false, "shuffleChoices": true, "extendBaseMarkingAlgorithm": true, "minMarks": 0, "maxMarks": 0, "customMarkingAlgorithm": "", "showCellAnswerState": true, "unitTests": []}], "sortAnswers": false, "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 0, "prompt": "\n

What are the following limits?

\n

1) $\\lim_{x \\to \\infty}g(x)\\;\\;$

\n

Choose one of the following [[0]]

\n

2) $\\lim_{x \\to -\\infty}g(x)$

\n

Choose one of the following [[1]]

\n

Does $g$ have a finite global maximum? Click on Yes or No
[[2]]

\n

Does $g$ have a finite global maximum? Click on Yes or No
[[2]]

\n ", "variableReplacementStrategy": "originalfirst", "type": "gapfill", "scripts": {}, "customName": "", "variableReplacements": [], "useCustomName": false, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "unitTests": []}], "contributors": [{"name": "Paul Howes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/632/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Paul Howes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/632/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}