// Numbas version: finer_feedback_settings {"name": "Union, complement, intersection", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"showQuestionGroupNames": false, "name": "Union, complement, intersection", "metadata": {"notes": "", "licence": "Creative Commons Attribution 4.0 International", "description": "

Given some random finite subsets of the natural numbers, perform set operations $\\cap,\\;\\cup$ and complement.

"}, "statement": "

In this question, the universal set is  $\\mathcal{U}=\\{x \\in \\mathbb{N}\\; | \\;x \\leq \\var{a}\\}$.

\n

Let:

\n

$A=\\{x \\in \\mathbb{N}\\;|\\;\\var{b}\\leq x \\leq \\var{c}\\}$.

\n

$B=\\{x \\in \\mathbb{N}\\;|\\;x \\gt \\var{d}\\}$.

\n

$C=\\{ x \\in \\mathbb{N}\\;|\\; x \\text{ divisible by } \\var{f}\\}$.

\n

\n

", "functions": {"mod_set": {"type": "list", "parameters": [["a", "number"], ["b", "number"], ["c", "number"]], "language": "javascript", "definition": "//returns all integers which are divisible by c betweeen a and b\nvar l=[];\nfor(var i=a;iEnumerate the following sets:

\n

a) $A \\cap B=\\;$[[0]]

\n

b) $B \\cap C=\\;$[[1]]

\n

c) $A \\cap \\overline{C}=\\;$[[2]]

\n

d) $(\\overline{A} \\cup C) \\cap B=\\;$[[3]]

\n

\n

Note that you input sets in the form set(a,b,c,..,z) .

\n

For example set(1,2,3)gives the set $\\{1,2,3\\}$.

\n

The empty set is input as set().

\n

Also some labour saving tips:

\n

If you want to input all integers between $a$ and $b$ inclusive then instead of writing all the elements you can input this as set(a..b).

\n

If you want to input all integers between $a$ and $b$ inclusive in steps of $c$ then this is input as set(a..b#c). So all odd integers from $-3$ to $28$ are input as set(-3..28#2).

"}], "contributors": [{"name": "Peter Chapman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/210/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}], "resources": []}]}], "contributors": [{"name": "Peter Chapman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/210/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}