// Numbas version: finer_feedback_settings {"name": "Differentiation 12 - Product Rule (with Chain Rule)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"extensions": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "
Using the chain rule within product rule problems
"}, "statement": "Differentiate the following expressions with respect to $x$ using the product rule.
\nSimplify your answers as much as possible.
", "functions": {}, "rulesets": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "variables": {"c": {"templateType": "anything", "name": "c", "description": "", "group": "Ungrouped variables", "definition": "repeat(random(-9..9 except 0),13)"}, "p": {"templateType": "anything", "name": "p", "description": "", "group": "Ungrouped variables", "definition": "repeat(random(2..6),10)"}}, "ungrouped_variables": ["c", "p"], "tags": [], "preamble": {"js": "", "css": ""}, "variable_groups": [], "advice": "If you have trouble with this question, please refer back to 'Differentiation 11 - Product Rule (Basic)' and/or 'Differentiation 9 - Chain Rule' and make sure you understand fully everything presented to you in the advice section.
\nYou should then be able to see how to apply the rules to the above questions.
", "name": "Differentiation 12 - Product Rule (with Chain Rule)", "parts": [{"showCorrectAnswer": true, "marks": "2", "variableReplacements": [], "valuegenerators": [{"value": "", "name": "x"}], "answerSimplification": "all", "useCustomName": false, "scripts": {}, "customName": "", "type": "jme", "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "vsetRangePoints": 5, "checkVariableNames": false, "showFeedbackIcon": true, "vsetRange": [0, 1], "showPreview": true, "checkingAccuracy": 0.001, "prompt": "$\\simplify{x^2(x+{c[0]})^{p[0]}}$
", "failureRate": 1, "answer": "2x*(x+{c[0]})^{p[0]}+{p[0]}x^2*(x+{c[0]})^({p[0]}-1)", "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "unitTests": []}, {"showCorrectAnswer": true, "marks": "2", "variableReplacements": [], "valuegenerators": [{"value": "", "name": "x"}], "answerSimplification": "all", "useCustomName": false, "scripts": {}, "customName": "", "type": "jme", "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "vsetRangePoints": 5, "checkVariableNames": false, "showFeedbackIcon": true, "vsetRange": [0, 1], "showPreview": true, "checkingAccuracy": 0.001, "prompt": "$\\simplify{{c[1]}x^3({c[2]}x+{c[3]})^{p[1]}}$
", "failureRate": 1, "answer": "3{c[1]}x^2*({c[2]}x+{c[3]})^{p[1]}+{p[1]}{c[2]}{c[1]}x^3*({c[2]}x+{c[3]})^({p[1]}-1)", "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "unitTests": []}, {"showCorrectAnswer": true, "marks": "2", "variableReplacements": [], "valuegenerators": [{"value": "", "name": "x"}], "answerSimplification": "all", "useCustomName": false, "scripts": {}, "customName": "", "type": "jme", "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "vsetRangePoints": 5, "checkVariableNames": false, "showFeedbackIcon": true, "vsetRange": [0, 1], "showPreview": true, "checkingAccuracy": 0.001, "prompt": "$\\simplify{{c[4]}x^{p[2]}({c[5]}x^2+{c[6]})^{p[3]}}$
", "failureRate": 1, "answer": "{p[2]}{c[4]}x^({p[2]}-1)*({c[5]}x^2+{c[6]})^{p[3]}+2{p[3]}{c[4]}{c[5]}x^({p[2]}+1)*({c[5]}x^2+{c[6]})^({p[3]}-1)", "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "unitTests": []}, {"showCorrectAnswer": true, "marks": "2", "variableReplacements": [], "valuegenerators": [{"value": "", "name": "x"}], "answerSimplification": "all", "useCustomName": false, "scripts": {}, "customName": "", "type": "jme", "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "vsetRangePoints": 5, "checkVariableNames": false, "showFeedbackIcon": true, "vsetRange": [0, 1], "showPreview": true, "checkingAccuracy": 0.001, "prompt": "$\\simplify{(x+{c[7]})^{p[4]}(x+{c[8]})^{p[5]}}$
", "failureRate": 1, "answer": "{p[4]}(x+{c[7]})^({p[4]}-1)*(x+{c[8]})^{p[5]}+{p[5]}(x+{c[8]})^({p[5]}-1)*(x+{c[7]})^{p[4]}", "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "unitTests": []}, {"showCorrectAnswer": true, "marks": "2", "variableReplacements": [], "valuegenerators": [{"value": "", "name": "x"}], "answerSimplification": "all", "useCustomName": false, "scripts": {}, "customName": "", "type": "jme", "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "vsetRangePoints": 5, "checkVariableNames": false, "showFeedbackIcon": true, "vsetRange": [0, 1], "showPreview": true, "checkingAccuracy": 0.001, "prompt": "$\\simplify{({c[9]}x^2+{c[10]})^{p[6]}({c[11]}x^2+{c[12]})^{p[7]}}$
", "failureRate": 1, "answer": "2{p[6]}{c[9]}x*({c[9]}x^2+{c[10]})^({p[6]}-1)*({c[11]}x^2+{c[12]})^{p[7]}+2{p[7]}{c[11]}x*({c[11]}x^2+{c[12]})^({p[7]}-1)*({c[9]}x^2+{c[10]})^{p[6]}", "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "unitTests": []}], "type": "question", "contributors": [{"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}