// Numbas version: finer_feedback_settings {"name": "Differentiation 16 - Applications", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variables": {"b": {"templateType": "anything", "name": "b", "description": "", "definition": "round(-(3*a*r2+r1)/2)", "group": "Ungrouped variables"}, "lg2": {"templateType": "anything", "name": "lg2", "description": "", "definition": "if(mx=0,'$\\\\gt$','$\\\\lt$')", "group": "Ungrouped variables"}, "mx": {"templateType": "anything", "name": "mx", "description": "", "definition": "if(3a*r2+b<0,0,1)", "group": "Ungrouped variables"}, "f2": {"templateType": "anything", "name": "f2", "description": "", "definition": "(-(2{b})+sqrt((2{b})^2-4(3{a}){c}))/(6{a})", "group": "Ungrouped variables"}, "r2": {"templateType": "anything", "name": "r2", "description": "", "definition": "random(-6..6 except 0)", "group": "Ungrouped variables"}, "r1": {"templateType": "anything", "name": "r1", "description": "", "definition": "random(-4..4#2 except 0)-3*a*r2", "group": "Ungrouped variables"}, "a": {"templateType": "anything", "name": "a", "description": "", "definition": "random(-2..2 except 0)", "group": "Ungrouped variables"}, "type2": {"templateType": "anything", "name": "type2", "description": "", "definition": "if(mx=1, 'maximum','minimum')", "group": "Ungrouped variables"}, "c": {"templateType": "anything", "name": "c", "description": "", "definition": "r1*r2", "group": "Ungrouped variables"}, "mn": {"templateType": "anything", "name": "mn", "description": "", "definition": "if(3a*r2+b<0,1,0)", "group": "Ungrouped variables"}, "d": {"templateType": "anything", "name": "d", "description": "", "definition": "random(-10..10)", "group": "Ungrouped variables"}, "type1": {"templateType": "anything", "name": "type1", "description": "", "definition": "if(mx=0, 'maximum','minimum')", "group": "Ungrouped variables"}, "lg1": {"templateType": "anything", "name": "lg1", "description": "", "definition": "if(mx=0,'$\\\\lt$','$\\\\gt$')", "group": "Ungrouped variables"}, "f1": {"templateType": "anything", "name": "f1", "description": "", "definition": "(-(2{b})-sqrt((2{b})^2-4(3{a}){c}))/(6{a})", "group": "Ungrouped variables"}}, "statement": "

Find the coordinates of the stationary points of the function.

", "name": "Differentiation 16 - Applications", "parts": [{"marks": 0, "customMarkingAlgorithm": "", "scripts": {}, "extendBaseMarkingAlgorithm": true, "customName": "", "sortAnswers": false, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "showFeedbackIcon": true, "type": "gapfill", "prompt": "

$f(x)=\\simplify[all,!collectNumbers,!noleadingminus]{{a}x^3+{b}x^2+{c}x+{d}}$

\n

$f'(x)=$ [[2]]

\n

$f''(x)=$ [[3]]

\n

\n

Find when $f'(x)=0$, hence find:

\n

$x$-coordinate of the stationary point giving a minimum $=$ [[0]]

\n

$x$-coordinate of the stationary point giving a maximum $=$ [[1]]

", "gaps": [{"vsetRangePoints": 5, "customMarkingAlgorithm": "", "showPreview": true, "extendBaseMarkingAlgorithm": true, "customName": "", "variableReplacementStrategy": "originalfirst", "checkingType": "absdiff", "checkingAccuracy": 0.001, "valuegenerators": [], "showFeedbackIcon": true, "marks": 1, "checkVariableNames": false, "answerSimplification": "std", "vsetRange": [0, 1], "failureRate": 1, "answer": "{mx*r2}+{(1-mx)}*{(r1)}/{(3*a)}", "showCorrectAnswer": true, "scripts": {}, "type": "jme", "unitTests": [], "useCustomName": false, "variableReplacements": []}, {"vsetRangePoints": 5, "customMarkingAlgorithm": "", "showPreview": true, "extendBaseMarkingAlgorithm": true, "customName": "", "variableReplacementStrategy": "originalfirst", "checkingType": "absdiff", "checkingAccuracy": 0.001, "valuegenerators": [], "showFeedbackIcon": true, "marks": 1, "checkVariableNames": false, "answerSimplification": "std", "vsetRange": [0, 1], "failureRate": 1, "answer": "{mn*r2}+{(1-mn)}*{(r1)}/{(3*a)}", "showCorrectAnswer": true, "scripts": {}, "type": "jme", "unitTests": [], "useCustomName": false, "variableReplacements": []}, {"vsetRangePoints": 5, "customMarkingAlgorithm": "", "showPreview": true, "extendBaseMarkingAlgorithm": true, "customName": "", "variableReplacementStrategy": "originalfirst", "checkingType": "absdiff", "checkingAccuracy": 0.001, "valuegenerators": [{"name": "x", "value": ""}], "showFeedbackIcon": true, "marks": "1", "checkVariableNames": false, "answerSimplification": "all", "vsetRange": [0, 1], "failureRate": 1, "answer": "3{a}x^2+2{b}x+{c}", "showCorrectAnswer": true, "scripts": {}, "type": "jme", "unitTests": [], "useCustomName": false, "variableReplacements": []}, {"vsetRangePoints": 5, "customMarkingAlgorithm": "", "showPreview": true, "extendBaseMarkingAlgorithm": true, "customName": "", "variableReplacementStrategy": "originalfirst", "checkingType": "absdiff", "checkingAccuracy": 0.001, "valuegenerators": [{"name": "x", "value": ""}], "showFeedbackIcon": true, "marks": "1", "checkVariableNames": false, "answerSimplification": "all", "vsetRange": [0, 1], "failureRate": 1, "answer": "6{a}x+2{b}", "showCorrectAnswer": true, "scripts": {}, "type": "jme", "unitTests": [], "useCustomName": false, "variableReplacements": []}], "unitTests": [], "useCustomName": false, "variableReplacements": []}], "functions": {}, "rulesets": {"std": ["all", "fractionNumbers", "!noLeadingMinus", "!collectNumbers"]}, "variable_groups": [], "preamble": {"css": "", "js": ""}, "tags": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "extensions": [], "ungrouped_variables": ["a", "c", "b", "r1", "r2", "mn", "d", "lg2", "lg1", "type1", "mx", "type2", "f1", "f2"], "advice": "

On differentiating we get $\\displaystyle \\frac{df}{dx}=\\simplify[std]{{3*a}x^2+{2*b}x+{c}}$.

\n

To find the stationary points we have to solve $\\displaystyle \\frac{df}{dx}=0$ for $x$.

\n

So we have to solve $\\simplify[std]{{3*a}x^2+{2*b}x+{c}=0}$.

\n

Note that the quadratic factorises and the equation becomes $\\simplify[std]{({3a}x-{r1})(x-{r2})=0}$.

\n

Hence we have two stationary points: $x=\\simplify[std]{{r1}/{3a}}$ and $x=\\var{r2}$.

\n

To find out the types of these stationary points we look at the sign of $\\displaystyle \\frac{d^2f}{dx^2} = \\simplify{{6a}*x+{2*b}}$ at  the stationary points.

\n

If  $\\displaystyle \\frac{d^2f}{dx^2} \\lt 0 $ at a stationary point then it is a MAXIMUM.

\n

If  $\\displaystyle \\frac{d^2f}{dx^2} \\gt 0 $ at a stationary point then it is a MINIMUM.

\n

If  $\\displaystyle \\frac{d^2f}{dx^2} = 0 $ at a stationary point then we have to do more work!

\n

At $x=\\var{r2}$ we have $\\displaystyle \\frac{d^2f}{dx^2} = \\simplify{{6*a*r2+2*b}}${lg1}$0$ hence is a {type1}.

\n

At $\\displaystyle x=\\simplify[std]{{r1}/{3a}}$ we have $\\displaystyle \\frac{d^2f}{dx^2} = \\simplify{{2*r1+2*b}}${lg2}$0$ hence is a {type2}.

\n

 

", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Finding the stationary points of a cubic with two turning points

"}, "type": "question", "contributors": [{"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}]}], "contributors": [{"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}]}