// Numbas version: finer_feedback_settings {"name": "Vector addition by summing scalar components", "extensions": ["geogebra", "weh", "quantities"], "custom_part_types": [{"source": {"pk": 24, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/24/edit"}, "name": "Angle quantity", "short_name": "angle-quantity-from-reference", "description": "
Angle as a quantity in degrees.
", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "plain_string(settings['correct_quantity'])", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": false}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \nright and good_units and right_sign and angle_in_range, add_credit(1.0,'Correct.'),\nright and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\nright and right_sign and not good_units, add_credit(settings['C2'],'Correct angle, but missing degree symbol.'),\nright and good_units and right_sign and not angle_in_range,add_credit(settings['C1'],'Angle is out of range.'),\nclose and good_units, add_credit(settings['C1'],'Close.'),\nclose and not good_units, add_credit(settings['C3'],'Answer is close, but missing degree symbol.'),\nincorrect('Wrong answer.')\n)\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\ncorrect_scalar:\nscalar(correct_quantity)\n \n\ncorrect_quantity:\nsettings['correct_quantity']\n\ncorrect_units:\nunits(correct_quantity)\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\njoin(\nsplit(studentAnswer[len(match_student_number[0])..len(studentAnswer)]\n,\"\u00b0\"),\" deg\")\n\n\n\ngood_units:\ntry(\nkind(quantity(1, student_units))= kind(correct_quantity),\nmsg,\nfeedback(msg);false)\n\nstudent_quantity:\nswitch(not good_units, \nstudent_scalar * correct_units, \nnot right_sign,\n-quantity(student_scalar, student_units),\nquantity(student_scalar,student_units)\n)\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)\n\nangle_in_range:\nif(settings['restrict_angle'], abs(student_scalar) <= 90, true)\n\nright:\nwithinTolerance(abs(student_scalar), abs(correct_scalar), settings['right'])\n\nclose:\nwithinTolerance(student_scalar, correct_scalar, settings['close'])", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \nright and good_units and right_sign and angle_in_range, add_credit(1.0,'Correct.'),\nright and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\nright and right_sign and not good_units, add_credit(settings['C2'],'Correct angle, but missing degree symbol.'),\nright and good_units and right_sign and not angle_in_range,add_credit(settings['C1'],'Angle is out of range.'),\nclose and good_units, add_credit(settings['C1'],'Close.'),\nclose and not good_units, add_credit(settings['C3'],'Answer is close, but missing degree symbol.'),\nincorrect('Wrong answer.')\n)"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)"}, {"name": "correct_scalar", "description": "", "definition": "scalar(correct_quantity)\n "}, {"name": "correct_quantity", "description": "", "definition": "settings['correct_quantity']"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "", "definition": "join(\nsplit(studentAnswer[len(match_student_number[0])..len(studentAnswer)]\n,\"\u00b0\"),\" deg\")\n\n"}, {"name": "good_units", "description": "", "definition": "try(\nkind(quantity(1, student_units))= kind(correct_quantity),\nmsg,\nfeedback(msg);false)"}, {"name": "student_quantity", "description": "", "definition": "switch(not good_units, \nstudent_scalar * correct_units, \nnot right_sign,\n-quantity(student_scalar, student_units),\nquantity(student_scalar,student_units)\n)"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity)"}, {"name": "angle_in_range", "description": "", "definition": "if(settings['restrict_angle'], abs(student_scalar) <= 90, true)"}, {"name": "right", "description": "Will check for correct sign elswhere.
", "definition": "withinTolerance(abs(student_scalar), abs(correct_scalar), settings['right'])"}, {"name": "close", "description": "Must have correct sign to be close.
", "definition": "withinTolerance(student_scalar, correct_scalar, settings['close'])\n"}], "settings": [{"name": "correct_quantity", "label": "Correct Angle as quantity ", "help_url": "", "hint": "", "input_type": "code", "default_value": "qty(45,'deg')", "evaluate": true}, {"name": "right", "label": "Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within ± this amount from the correct value.", "input_type": "code", "default_value": "0.1", "evaluate": true}, {"name": "restrict_angle", "label": "Less than 90\u00b0", "help_url": "", "hint": "When checked, angle must be between -90° and +90°.", "input_type": "checkbox", "default_value": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units.", "input_type": "percent", "default_value": "75"}, {"name": "close", "label": " Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within ± this amount from the correct value.", "input_type": "code", "default_value": "0.5", "evaluate": true}, {"name": "C2", "label": "No units or wrong sign", "help_url": "", "hint": "Partial credit for forgetting units or using wrong sign.", "input_type": "percent", "default_value": "50"}, {"name": "C3", "label": "Close, no units.", "help_url": "", "hint": "Partial Credit for close value without units.", "input_type": "percent", "default_value": "25"}], "public_availability": "restricted", "published": false, "extensions": ["quantities"]}, {"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "A value with units marked right if within an adjustable % error of the correct value. Marked close if within a wider margin of error.
", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "Modify the unit portion of the student's answer by
\n1. replacing \"ohms\" with \"ohm\" case insensitive
\n2. replacing '-' with ' '
\n3. replacing '°' with ' deg'
\nto allow answers like 10 ft-lb and 30°
", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "This fixes the student answer for two common errors.
\nIf student_units are wrong - replace with correct units
\nIf student_scalar has the wrong sign - replace with right sign
\nIf student makes both errors, only one gets fixed.
", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "Only marked close if the student actually has the right sign.
", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units. if correct answer is 100 N and close is ±1%,Position of point C
", "name": "C1", "definition": "vector(5,0)\n", "group": "Inputs", "templateType": "anything"}, "FB": {"description": "", "name": "FB", "definition": "vector(random(-5..5),random(-5..5 except 0))", "group": "Inputs", "templateType": "anything"}, "debug": {"description": "", "name": "debug", "definition": "false", "group": "Inputs", "templateType": "anything"}, "scale": {"description": "", "name": "scale", "definition": "random(0.1,0.2,0.5,2,4,5,10,20)", "group": "Inputs", "templateType": "anything"}, "B1": {"description": "Position of point B
", "name": "B1", "definition": "vector(0,0)\n", "group": "Inputs", "templateType": "anything"}, "A1": {"description": "Position of point A
", "name": "A1", "definition": "vector(-5,0)", "group": "Inputs", "templateType": "anything"}, "FA": {"description": "", "name": "FA", "definition": "vector(random(-5..5 except 0),random(-5..5))", "group": "Inputs", "templateType": "anything"}, "ref": {"description": "placeholder for reference axis
", "name": "ref", "definition": "0", "group": "Outputs", "templateType": "anything"}, "FC": {"description": "", "name": "FC", "definition": "vector(random(-5..5 except 0),random(-5..5 except 0))", "group": "Inputs", "templateType": "anything"}}, "rulesets": {}, "statement": "Three forces, A, B, and C are drawn to scale of 1 square = {scale} {units[1]}. Find the resultant by summing the scalar components.
\nNote: For full marks don't forget to add a zero for decimal numbers less than one, add negative signs if required and don't forget the correct units.
\n{geogebra_applet('vpfnqe8q', [['fa',FA],['fb',FB],['fc',FC]])}
\n", "variablesTest": {"condition": "abs(FR) >=3", "maxRuns": "100"}, "tags": [], "metadata": {"licence": "Creative Commons Attribution-NonCommercial 4.0 International", "description": "Add three vectors by determining their scalar components, summing them and then resolving the rectangular components to find the magnitude and direction of the resultant.
"}, "advice": "Vector Addition:
\n$R_x = \\Sigma F_x = \\var{scale FA[0]}+\\var{scale FB[0]}+\\var{scale FC[0]} =\\var{scale FR[0]}$ {units[1]}
\n$R_y = \\Sigma F_y = \\var{scale FA[1]}+\\var{scale FB[1]}+\\var{scale FC[1]} =\\var{scale FR[1]}$ {units[1]}
\n$R=\\sqrt{R_x^2 + R_y^2} = \\var{siground(resultant,4)}$
\n$\\theta = \\tan^{-1}\\left(\\left|\\frac{R_y}{R_x}\\right| \\right) =$ {siground(degrees(arctan(FR[0]/FR[1])),4)}°
\n", "variable_groups": [{"name": "Inputs", "variables": ["A1", "FA", "B1", "FB", "C1", "FC", "units", "debug", "D", "scale"]}, {"name": "Outputs", "variables": ["FR", "theta", "ref", "angle_from_ref", "resultant"]}], "preamble": {"css": "", "js": ""}, "ungrouped_variables": [], "name": "Vector addition by summing scalar components", "parts": [{"useCustomName": false, "variableReplacements": [], "showFeedbackIcon": true, "sortAnswers": false, "showCorrectAnswer": true, "marks": 0, "unitTests": [], "extendBaseMarkingAlgorithm": true, "type": "gapfill", "customName": "", "scripts": {}, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "prompt": "First, find the scalar components of the three forces. These are divided into the X and Y components and multipled by the force.
\n$A_x =$ [[0]] $B_x =$ [[2]] $C_x =$ [[4]]
\n$A_y =$ [[1]] $B_y =$ [[3]] $C_y =$ [[5]]
", "gaps": [{"useCustomName": false, "variableReplacements": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": "4", "unitTests": [], "extendBaseMarkingAlgorithm": true, "type": "engineering-answer", "customName": "", "scripts": {}, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "settings": {"correctAnswer": "qty(FA[0],units[1]) scale", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"useCustomName": false, "variableReplacements": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": "4", "unitTests": [], "extendBaseMarkingAlgorithm": true, "type": "engineering-answer", "customName": "", "scripts": {}, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "settings": {"correctAnswer": "qty(FA[1],units[1]) scale", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"useCustomName": false, "variableReplacements": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": "4", "unitTests": [], "extendBaseMarkingAlgorithm": true, "type": "engineering-answer", "customName": "", "scripts": {}, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "settings": {"correctAnswer": "qty(FB[0],units[1]) scale", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"useCustomName": false, "variableReplacements": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": "4", "unitTests": [], "extendBaseMarkingAlgorithm": true, "type": "engineering-answer", "customName": "", "scripts": {}, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "settings": {"correctAnswer": "qty(FB[1],units[1]) scale", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"useCustomName": false, "variableReplacements": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": "4", "unitTests": [], "extendBaseMarkingAlgorithm": true, "type": "engineering-answer", "customName": "", "scripts": {}, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "settings": {"correctAnswer": "qty(FC[0],units[1]) scale", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"useCustomName": false, "variableReplacements": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": "4", "unitTests": [], "extendBaseMarkingAlgorithm": true, "type": "engineering-answer", "customName": "", "scripts": {}, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "settings": {"correctAnswer": "qty(FC[1],units[1]) scale", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}]}, {"useCustomName": false, "variableReplacements": [], "showFeedbackIcon": true, "sortAnswers": false, "showCorrectAnswer": true, "marks": 0, "unitTests": [], "extendBaseMarkingAlgorithm": true, "type": "gapfill", "customName": "", "scripts": {}, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "prompt": "Then, sum the scalar components to get the scalar components of the resultant R.
\n$R_x = \\Sigma F_x = A_x + B_x + C_x =$ [[0]]
\n$R_y = \\Sigma F_y = A_y + B_y + C_y =$ [[1]]
", "gaps": [{"useCustomName": false, "variableReplacements": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": "4", "unitTests": [], "extendBaseMarkingAlgorithm": true, "type": "engineering-answer", "customName": "", "scripts": {}, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "settings": {"correctAnswer": "qty(FR[0],units[1]) scale", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"useCustomName": false, "variableReplacements": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": "4", "unitTests": [], "extendBaseMarkingAlgorithm": true, "type": "engineering-answer", "customName": "", "scripts": {}, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "settings": {"correctAnswer": "qty(FR[1],units[1]) scale", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}]}, {"useCustomName": false, "variableReplacements": [], "showFeedbackIcon": true, "sortAnswers": false, "showCorrectAnswer": true, "marks": 0, "unitTests": [], "extendBaseMarkingAlgorithm": true, "type": "gapfill", "customName": "", "scripts": {"mark": {"script": "numbasGGBApplet0.setValue('show',true);", "order": "after"}}, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "prompt": "Finally, resolve $R_x$ and $R_y$ to find the magnitude and direction of R.
Note: Round your answer to 2 decimal places.
$R = \\sqrt{{R_x}^2 +{R_y}^2}$ = [[0]]
\n$\\theta = \\tan^{-1}\\left(\\left|\\dfrac{R_y}{R_x}\\right| \\right)$ = [[2]] measured from the [[1]]
\nmagnitude = {siground(resultant,4)} direction={theta}
", "gaps": [{"useCustomName": false, "variableReplacements": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": "4", "unitTests": [], "extendBaseMarkingAlgorithm": true, "type": "engineering-answer", "customName": "", "scripts": {}, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "settings": {"correctAnswer": "resultant", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"useCustomName": false, "variableReplacements": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": "0", "unitTests": [], "extendBaseMarkingAlgorithm": true, "type": "drop-down-axis-reference", "customName": "", "scripts": {"mark": {"script": "index = Numbas.jme.unwrapValue(this.studentAnswerAsJME());\nangles = Numbas.jme.unwrapValue(Numbas.exam.currentQuestion.scope.getVariable('angle_from_ref'));\nans = Qty(angles[index],'deg');\nthis.parentPart.gaps[2].settings.correct_quantity.value= ans;\nthis.markingComment(\"For your axis, the direction is \" + ans.toPrec('0.1 deg') +'.');\n", "order": "after"}}, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "settings": {"dummy": "'ignore'"}}, {"useCustomName": false, "variableReplacements": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": "4", "unitTests": [], "extendBaseMarkingAlgorithm": true, "type": "angle-quantity-from-reference", "customName": "", "scripts": {}, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "settings": {"right": "0.2", "correct_quantity": "qty(123,'deg')", "restrict_angle": true, "close": "1.01", "C1": "75", "C2": "50", "C3": "25"}}]}], "extensions": ["geogebra", "quantities", "weh"], "type": "question", "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}, {"name": "Chris King", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3543/"}]}]}], "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}, {"name": "Chris King", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3543/"}]}