// Numbas version: exam_results_page_options {"name": "Ed's copy of Masses connected through a pulley", "extensions": [], "custom_part_types": [], "resources": [["question-resources/pulley2.png", "/srv/numbas/media/question-resources/pulley2.png"], ["question-resources/pulley3.png", "/srv/numbas/media/question-resources/pulley3.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"mu": {"definition": "random(0.05..0.95#0.025)", "name": "mu", "templateType": "randrange", "group": "Ungrouped variables", "description": ""}, "m1": {"definition": "random(6..15#0.5)", "name": "m1", "templateType": "randrange", "group": "Ungrouped variables", "description": ""}, "tension": {"definition": "m1*(9.8 - acceleration)", "name": "tension", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "R": {"definition": "m2*9.8*cos(radians(theta))", "name": "R", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "t": {"definition": "m2*9.8*cos(radians(90-theta)) + mu*R", "name": "t", "templateType": "anything", "group": "Ungrouped variables", "description": "

An intermediary value to simplify the advice.

"}, "m2": {"definition": "random(0.5..5.5#0.25)", "name": "m2", "templateType": "randrange", "group": "Ungrouped variables", "description": ""}, "theta": {"definition": "random(10..70#1)", "name": "theta", "templateType": "randrange", "group": "Ungrouped variables", "description": ""}, "acceleration": {"definition": "(m1*9.8 - m2*9.8*cos(radians(90-theta))-mu*R)/(m1+m2)", "name": "acceleration", "templateType": "anything", "group": "Ungrouped variables", "description": ""}}, "ungrouped_variables": ["m1", "m2", "theta", "mu", "R", "acceleration", "tension", "t"], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Two particles connected by a string which passes over a pulley at the top of an inclined plane. Find the acceleration of the masses and the tension in the string. Can not model the whole system as a single particle.

"}, "variable_groups": [], "extensions": [], "tags": [], "name": "Ed's copy of Masses connected through a pulley", "preamble": {"css": "", "js": ""}, "functions": {}, "showQuestionGroupNames": false, "rulesets": {}, "type": "question", "statement": "

A light inextensible string connects two boxes $A$ and $B$, of masses $m_1 = \\var{m1} \\mathrm{kg}$ and $m_2 = \\var{m2} \\mathrm{kg}$ respectively.

\n

At the top of a rough inclined plane there is fixed a small smooth pulley over which the string passes. The plane is inclined to the horizontal at an angle $\\theta = \\var{theta}^{\\circ}$. 

\n

Box $A$ hangs on the edge of the plane with the string vertical and taut, whereas box $B$ rests on the inclined plane. 

\n

\n

You are told that the coefficient of friction between $B$ and the plane is $\\mu = \\var{mu}$ and the acceleration due to gravity is $g = 9.8\\mathrm{ms^{-2}}$. 

", "advice": "

We can draw a diagram to show all the forces acting on each box and their accelerations. The surface is rough and friction will be limiting so equal to $\\mu R$. 

\n

Here, the mass of box $A$ is $m_1 = \\var{m1}\\mathrm{kg}$ and the mass of box $B$ is $m_2 = \\var{m2}\\mathrm{kg}$. The acceleration acts in the direction shown as box $A$ is heavier. 

\n

As the boxes are moving in different directions we can not model the whole system as a single particle.

\n

a)

\n

To find the normal reaction $R$ between box $B$ and the plane we resolve the forces perpendicular to the plane, where there is no acceleration.

\n

\\begin{align}
R - m_2g \\cos \\theta & = 0, \\\\
R &= m_2 g \\cos \\theta, \\\\
& = \\var{m2} \\times 9.8 \\cos ( \\var{theta}{^\\circ}), \\\\
& = \\var{precround(R,3)} \\mathrm{N}.
\\end{align}

\n

The normal reaction between the box $B$ and the plane is $\\var{precround(R,3)} \\mathrm{N}$.

\n

b)

\n

To find the acceleration we treat the boxes separately to get two equations involving the unknowns $T$ and $a$, then add them in order to cancel $T$.

\n

Looking at box $B$ and resolving parallel to the plane in the direction of acceleration we have equation (1):

\n

\\begin{align}
T - m_2g \\cos(90^{\\circ} - \\theta) - \\mu R & = m_2 a, \\\\
T - (\\var{m2} \\times g \\cos(\\var{90-theta}^{\\circ})) - (\\var{mu} \\times \\var{precround(R,3)}) & = \\var{m2}a, \\\\
\\simplify{T-{precround(t,3)}} &= \\var{m2}a.
\\end{align}

\n

Looking at box $A$ and resolving in the direction of acceleration we have equation (2):

\n

\\begin{align}
m_1g - T & = m_1a, \\\\
\\var{m1}g - T & = \\var{m1}a.
\\end{align}

\n

Adding equations (1) and (2) gives

\n

\\begin{align}
\\simplify[basic]{T - {precround(t,3)} +{m1}g -T} & = \\var{m2}a + \\var{m1}a, \\\\
\\var{m1}g - \\var{precround(m2*9.8*cos(radians(90-theta)) - mu*R,3)} & =(\\var{m2} + \\var{m1} )a, \\\\
\\var{precround(m1*9.8-m2*9.8*cos(radians(90-theta)) - mu*R,3)} & = \\var{m2+m1}a, \\\\
a & = \\var{precround((m1*9.8-m2*9.8*cos(radians(90-theta)) - mu*R)/(m2+m1),3)} \\mathrm{ms^{-2}}.
\\end{align}

\n

The acceleration of the system is $\\var{precround(acceleration,3)} \\mathrm{ms^{-2}}$.

\n

c)

\n

We can find the tension in the string by substituting our value for acceleration into either equation (1) or (2).

\n

This gives 

\n

\\begin{align} 
\\var{m1}g - T & = \\var{m1}a, \\\\
T & = \\var{m1}g - \\var{m1}a, \\\\
& = \\var{m1} (9.8 - \\var{precround(acceleration,3)}), \\\\
& = \\var{precround(m1*(9.8 - acceleration),3)} \\mathrm{N}.
\\end{align} 

\n

The tension in the string is $\\var{precround(tension,3)} \\mathrm{N}.$

", "question_groups": [{"questions": [], "pickQuestions": 0, "pickingStrategy": "all-ordered", "name": ""}], "parts": [{"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "prompt": "

Find the normal reaction force, $R$, between box $B$ and the plane. Give your answer in Newtons ($\\mathrm{N}$) to 3 decimal places.

\n

$R = $ [[0]]

", "type": "gapfill", "scripts": {}, "marks": 0, "gaps": [{"allowFractions": false, "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "variableReplacements": [], "minValue": "R", "precision": "3", "precisionType": "dp", "precisionPartialCredit": 0, "precisionMessage": "

You have not given your answer to the correct precision.

", "maxValue": "R", "scripts": {}, "type": "numberentry", "showPrecisionHint": false, "strictPrecision": true, "marks": 1}], "variableReplacements": []}, {"allowFractions": false, "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "variableReplacements": [{"variable": "R", "must_go_first": false, "part": "p0g0"}], "minValue": "(m1*9.8 - m2*9.8*cos(radians(90-theta))-mu*R)/(m1+m2)", "precision": "3", "precisionType": "dp", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "maxValue": "(m1*9.8 - m2*9.8*cos(radians(90-theta))-mu*R)/(m1+m2)", "prompt": "

The system is released from rest. Using your value of $R$ from part a) find the acceleration of the system, in $\\mathrm{ms^{-2}}$ to 3 decimal places.

", "type": "numberentry", "scripts": {}, "showPrecisionHint": false, "strictPrecision": false, "marks": 1}, {"allowFractions": false, "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "variableReplacements": [{"variable": "acceleration", "must_go_first": false, "part": "p1"}], "minValue": "tension", "precision": "3", "precisionType": "dp", "precisionPartialCredit": 0, "precisionMessage": "

You have not given your answer to the correct precision.

", "maxValue": "tension", "prompt": "

Using the answers to the previous parts, find the tension in the string, in Newtons ($\\mathrm{N}$) to 3 decimal places.

", "type": "numberentry", "scripts": {}, "showPrecisionHint": false, "strictPrecision": false, "marks": 1}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}, {"name": "Ed Southwood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2415/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}, {"name": "Ed Southwood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2415/"}]}