// Numbas version: exam_results_page_options {"name": "Johan's copy of Mark equations", "extensions": ["eukleides", "quantities", "random_person"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "

All the answers in this question are equations. In order to mark each equation, Numbas needs to pick some values that satisfy the equation and some that don't, and check that the student's answer agrees with the expected answer.

\n

Any equation with the same solution set as the expected answer will be marked correct.

", "extensions": ["eukleides", "quantities", "random_person"], "name": "Johan's copy of Mark equations", "preamble": {"css": "", "js": ""}, "rulesets": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

All the answers in this question are equations. In order to mark each\n equation, Numbas needs to pick some values that satisfy the equation \nand some that don't, and check that the student's answer agrees with the\n expected answer.

Any equation with the same solution set as the expected answer will be marked correct.

"}, "tags": [], "parts": [{"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "failureRate": 1, "useCustomName": false, "vsetRangePoints": "10", "showPreview": true, "type": "jme", "marks": 1, "valuegenerators": [{"value": "", "name": "p"}, {"value": "random(random(vRange),factor*p)", "name": "s"}], "checkingType": "absdiff", "checkVariableNames": false, "scripts": {}, "checkingAccuracy": 0.001, "answer": "s={factor}p", "unitTests": [], "showFeedbackIcon": true, "customName": "", "extendBaseMarkingAlgorithm": true, "vsetRange": [0, 1], "variableReplacements": [], "prompt": "

$s = \\simplify[]{{factor}p}$

\n

Also try $s-\\var{factor}p=0$ and $p=s/\\var{factor}$.

"}, {"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "failureRate": 1, "useCustomName": false, "vsetRangePoints": "10", "showPreview": true, "type": "jme", "marks": 1, "valuegenerators": [{"value": "", "name": "p"}, {"value": "random(random(vRange),factor*p)", "name": "s"}], "checkingType": "absdiff", "checkVariableNames": false, "scripts": {}, "checkingAccuracy": 0.001, "answer": "s={factor}p", "unitTests": [], "showFeedbackIcon": true, "mustmatchpattern": {"nameToCompare": "", "message": "Your answer must be in the form $s = f(p)$.", "partialCredit": 0, "pattern": "s=?"}, "customName": "", "extendBaseMarkingAlgorithm": true, "vsetRange": [0, 1], "variableReplacements": [], "prompt": "

$s = \\simplify[]{{factor}p}$

\n

But this time there's a pattern-match restriction that your answer must be of the form $s = \\ldots$.

"}, {"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "failureRate": 1, "useCustomName": false, "vsetRangePoints": "10", "showPreview": true, "type": "jme", "marks": 1, "valuegenerators": [{"value": "", "name": "x"}, {"value": "random(random(vRange),sqrt(1-x^2))", "name": "y"}], "checkingType": "absdiff", "checkVariableNames": false, "scripts": {}, "checkingAccuracy": 0.001, "answer": "x^2+y^2=1", "unitTests": [], "showFeedbackIcon": true, "customName": "", "extendBaseMarkingAlgorithm": true, "vsetRange": [0, 1], "variableReplacements": [], "prompt": "

$x^2+y^2=1$

\n

Also try $1-x^2-y^2=0$ and $y=\\sqrt{1-x^2}$.

"}, {"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "failureRate": 1, "useCustomName": false, "vsetRangePoints": "10", "showPreview": true, "type": "jme", "marks": 1, "valuegenerators": [{"value": "", "name": "x"}, {"value": "", "name": "y"}, {"value": "random(random(vRange),sqrt(1-x^2-y^2))", "name": "z"}], "checkingType": "absdiff", "checkVariableNames": false, "scripts": {}, "checkingAccuracy": 0.001, "answer": "x^2+y^2+z^2=1", "unitTests": [], "showFeedbackIcon": true, "customName": "", "extendBaseMarkingAlgorithm": true, "vsetRange": [0, "0.5"], "variableReplacements": [], "prompt": "

$x^2 + y^2 + z^2=1$

"}, {"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "failureRate": 1, "useCustomName": false, "vsetRangePoints": "10", "showPreview": true, "type": "jme", "marks": 1, "valuegenerators": [{"value": "", "name": "x"}, {"value": "sqrt(1-x^2)+random(0,random(-0.001..0.001#0))", "name": "y"}], "checkingType": "absdiff", "checkVariableNames": false, "scripts": {}, "checkingAccuracy": 0.001, "answer": "x^2+y^2>1", "unitTests": [], "showFeedbackIcon": true, "customName": "", "extendBaseMarkingAlgorithm": true, "vsetRange": ["-1", 1], "variableReplacements": [], "prompt": "

$x^2+y^2>1$

\n

Because this is an inequality, we need to randomly pick values either side of the critical curve, and some exactly on it.

"}], "functions": {}, "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"description": "", "group": "Ungrouped variables", "name": "a", "definition": "1", "templateType": "anything"}, "factor": {"description": "", "group": "Ungrouped variables", "name": "factor", "definition": "random(2 .. 8#1)", "templateType": "randrange"}}, "ungrouped_variables": ["a", "factor"], "advice": "", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Johan Maertens", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1301/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Johan Maertens", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1301/"}]}