// Numbas version: finer_feedback_settings {"name": "rekenregels van machten", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "
This question aims to test understanding and ability to use the laws of indices.
", "licence": "Creative Commons Attribution 4.0 International"}, "variablesTest": {"condition": "", "maxRuns": 100}, "name": "rekenregels van machten", "variable_groups": [], "parts": [{"sortAnswers": false, "variableReplacements": [], "unitTests": [], "customMarkingAlgorithm": "", "customName": "", "gaps": [{"checkingAccuracy": 0.001, "failureRate": 1, "showPreview": true, "valuegenerators": [{"name": "a", "value": ""}], "vsetRangePoints": 5, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "checkVariableNames": false, "checkingType": "absdiff", "showCorrectAnswer": true, "variableReplacements": [], "unitTests": [], "customName": "", "extendBaseMarkingAlgorithm": true, "answer": "a^{x+y}", "showFeedbackIcon": true, "mustmatchpattern": {"pattern": "a^?`?", "partialCredit": 0, "nameToCompare": "", "message": "You haven't simplified: your answer is not in the form $a^?$."}, "scripts": {}, "useCustomName": false, "marks": "2", "vsetRange": [0, 1], "type": "jme"}, {"variableReplacements": [], "unitTests": [], "customMarkingAlgorithm": "", "customName": "", "checkVariableNames": false, "showPreview": true, "extendBaseMarkingAlgorithm": true, "vsetRangePoints": 5, "showFeedbackIcon": true, "valuegenerators": [{"name": "a", "value": ""}], "answer": "a^{x-y}", "scripts": {}, "variableReplacementStrategy": "originalfirst", "useCustomName": false, "vsetRange": [0, 1], "marks": 1, "checkingType": "absdiff", "checkingAccuracy": 0.001, "type": "jme", "showCorrectAnswer": true, "failureRate": 1}, {"variableReplacements": [], "unitTests": [], "customMarkingAlgorithm": "", "customName": "", "checkVariableNames": false, "showPreview": true, "extendBaseMarkingAlgorithm": true, "vsetRangePoints": 5, "showFeedbackIcon": true, "valuegenerators": [{"name": "a", "value": ""}], "answer": "a^{x*y}", "scripts": {}, "variableReplacementStrategy": "originalfirst", "useCustomName": false, "vsetRange": [0, 1], "marks": 1, "checkingType": "absdiff", "checkingAccuracy": 0.001, "type": "jme", "showCorrectAnswer": true, "failureRate": 1}], "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "prompt": "$a^{\\var{x}} \\times a^{\\var{y}} =$ [[0]].
\n$a^{\\var{x}} : a^{\\var{y}} =$ [[1]].(hier mag je de eventuele negatieve exponent laten staan)
\n$(a^{\\var{x}})^{\\var{y}} =$ [[2]].
", "scripts": {}, "variableReplacementStrategy": "originalfirst", "useCustomName": false, "steps": [{"variableReplacements": [], "unitTests": [], "customMarkingAlgorithm": "", "customName": "", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "prompt": "Gebruik de rekenregels
\n$a^{m} \\cdot a^n = a^{m+n}$
\n$a^{m} : a^n = a^{m-n}$.
\n$(a^{m})^n = a^{m \\cdot n}$.
", "scripts": {}, "variableReplacementStrategy": "originalfirst", "useCustomName": false, "marks": 0, "type": "information", "showCorrectAnswer": true}], "marks": 0, "stepsPenalty": "1", "type": "gapfill", "showCorrectAnswer": true}, {"sortAnswers": false, "variableReplacements": [], "unitTests": [], "customMarkingAlgorithm": "", "customName": "", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "prompt": "Write $\\var{c}a^\\var{p} \\times \\var{d}a^\\var{q}$ as an integer multiplied by a single power of $a$.
\n$\\var{c}a^\\var{p} \\times \\var{d}a^\\var{q} =$ [[0]].
\n", "scripts": {}, "variableReplacementStrategy": "originalfirst", "useCustomName": false, "marks": 0, "gaps": [{"checkingAccuracy": 0.001, "failureRate": 1, "showPreview": true, "valuegenerators": [{"name": "a", "value": ""}], "vsetRangePoints": 5, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "checkVariableNames": false, "checkingType": "absdiff", "showCorrectAnswer": true, "variableReplacements": [], "unitTests": [], "customName": "", "extendBaseMarkingAlgorithm": true, "answer": "{c*d}*a^{p+q}", "showFeedbackIcon": true, "mustmatchpattern": {"pattern": "$n*a^?`?", "partialCredit": 0, "nameToCompare": "", "message": "You haven't simplified: your answer is not in the form $?a^?$."}, "scripts": {}, "useCustomName": false, "marks": "2", "vsetRange": [0, 1], "type": "jme"}], "type": "gapfill", "showCorrectAnswer": true}, {"sortAnswers": false, "variableReplacements": [], "unitTests": [], "customMarkingAlgorithm": "", "customName": "", "gaps": [{"checkingAccuracy": 0.001, "failureRate": 1, "showPreview": true, "valuegenerators": [{"name": "a", "value": ""}], "vsetRangePoints": 5, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "checkVariableNames": false, "checkingType": "absdiff", "showCorrectAnswer": true, "variableReplacements": [], "unitTests": [], "customName": "", "extendBaseMarkingAlgorithm": true, "answer": "{b}/{g}a^{x-y}", "showFeedbackIcon": true, "mustmatchpattern": {"pattern": "$n/$n`? * a^?`?", "partialCredit": 0, "nameToCompare": "", "message": "You haven't simplified: your answer is not in the form $\\frac{?}{?} \\cdot a^?$."}, "scripts": {}, "useCustomName": false, "marks": "2", "vsetRange": [0, 1], "type": "jme"}], "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "prompt": "Write $\\displaystyle\\simplify{{b}*a^{x}/({g}*a^{y})}$ as a number multiplied by a single power of $a$.
\n$\\displaystyle\\simplify{{b}*a^{x}/({g}*a^{y})} =$ [[0]].
\n", "scripts": {}, "variableReplacementStrategy": "originalfirst", "useCustomName": false, "steps": [{"variableReplacements": [], "unitTests": [], "customMarkingAlgorithm": "", "customName": "", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "prompt": "You could use one of the following rules:
\n$a^m \\div a^n = a^{m-n}$.
\n$a^{-m} = \\displaystyle\\frac{1}{a^m}$.
", "scripts": {}, "variableReplacementStrategy": "originalfirst", "useCustomName": false, "marks": 0, "type": "information", "showCorrectAnswer": true}], "marks": 0, "stepsPenalty": "1", "type": "gapfill", "showCorrectAnswer": true}, {"sortAnswers": false, "variableReplacements": [], "unitTests": [], "customMarkingAlgorithm": "", "customName": "", "gaps": [{"checkingAccuracy": 0.001, "failureRate": 1, "showPreview": true, "valuegenerators": [{"name": "a", "value": ""}], "vsetRangePoints": 5, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "checkVariableNames": false, "checkingType": "absdiff", "showCorrectAnswer": true, "variableReplacements": [], "unitTests": [], "customName": "", "extendBaseMarkingAlgorithm": true, "answer": "{c^{q}}*a^{p*q}", "showFeedbackIcon": true, "mustmatchpattern": {"pattern": "$n`?*a^?`?", "partialCredit": 0, "nameToCompare": "", "message": "You must write your answer as an integer multiplied by a power of $a$."}, "scripts": {}, "useCustomName": false, "marks": "2", "vsetRange": [0, 1], "type": "jme"}], "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "prompt": "Write $(\\simplify{{c}*a^{p}})^{\\var{q}}$ as an integer multiplied by a single power of $a$.
\n$(\\simplify{{c}*a^{p}})^{\\var{q}} =$ [[0]].
\n", "scripts": {}, "variableReplacementStrategy": "originalfirst", "useCustomName": false, "steps": [{"variableReplacements": [], "unitTests": [], "customMarkingAlgorithm": "", "customName": "", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "prompt": "Use the rules:
\n$(ab)^m = a^mb^m$.
\n$(a^m)^n = a^{mn}$.
", "scripts": {}, "variableReplacementStrategy": "originalfirst", "useCustomName": false, "marks": 0, "type": "information", "showCorrectAnswer": true}], "marks": 0, "stepsPenalty": 0, "type": "gapfill", "showCorrectAnswer": true}], "variables": {"g": {"description": "Used in part c
", "group": "Ungrouped variables", "name": "g", "templateType": "anything", "definition": "b*random(2..5)"}, "x": {"description": "Used in parts a,c and e
", "group": "Ungrouped variables", "name": "x", "templateType": "anything", "definition": "random(2..9 except y)"}, "c": {"description": "Used in parts b,d and f
", "group": "Ungrouped variables", "name": "c", "templateType": "anything", "definition": "random(2,3,4)"}, "d": {"description": "Used in parts b and e
", "group": "Ungrouped variables", "name": "d", "templateType": "anything", "definition": "random(3..5)"}, "q": {"description": "Used in parts b,d and f
", "group": "Ungrouped variables", "name": "q", "templateType": "anything", "definition": "random(3,5)"}, "y": {"description": "\nUsed in parts a,c and f
", "group": "Ungrouped variables", "name": "y", "templateType": "anything", "definition": "random(2..6)"}, "p": {"description": "Used in parts b and d
", "group": "Ungrouped variables", "name": "p", "templateType": "anything", "definition": "random(2..9)"}, "b": {"description": "Used in part c
", "group": "Ungrouped variables", "name": "b", "templateType": "anything", "definition": "random(2..4)"}}, "functions": {}, "tags": [], "rulesets": {}, "extensions": [], "ungrouped_variables": ["x", "y", "c", "d", "p", "q", "b", "g"], "preamble": {"js": "", "css": ""}, "advice": "Here we are using the rule of indices: $a^m \\times a^n = a^{m+n}$.
\nUsing this rule,
\n\\[
\\begin{align}
a^\\var{x} \\times a^\\var{y}\\ &= a^\\simplify[all, !collectNumbers]{{x}+{y}}\\\\
&= a^\\var{x+y}.
\\end{align}
\\]
We are asked to find $\\var{c}a^\\var{p} \\times \\var{d}a^\\var{q}$.
\nNotice there is a constant in front of each of the terms.
\nTo do this, write the product out explicitly, as
\n\\[\\var{c}a^\\var{p} \\times \\var{d}a^\\var{q} = \\var{c} \\times \\var{d} \\times a^\\var{p} \\times a^\\var{q}.\\]
\nWe know that $\\var{c} \\times \\var{d} = \\var{c*d}$, and using the rule of indices: $a^\\var{p} \\times a^\\var{q} = a^\\var{p+q}$.
\nTherefore:
\n\\begin{align}
\\var{c}a^\\var{p} \\times \\var{d}a^\\var{q}&= \\var{c*d} \\times a^\\var{p+q} \\\\
&= \\simplify{{c*d}*a^{p+q}}.
\\end{align}
Here we are using: $a^m \\div a^n = a^{m-n}$.
\nWe are asked to simplify the expression, $\\displaystyle\\simplify{{b}*a^{x}/({g}*a^{y})}$.
\nTo do this, we just have to use the previously mentioned rule of indices. We write this out explicity as
\n\\[\\simplify{{b}*a^{x}/({g}*a^{y})} = \\simplify{{b}/{g}} \\times \\simplify{a^{x}/(a^{y})}.\\]
\nUsing rules of indices,
\n\\begin{align} \\frac{a^\\var{x}}{a^\\var{y}} &= a^\\var{x} \\div a^\\var{y}\\\\
&= a^\\simplify[all, !collectNumbers]{{x}-{y}}\\\\
&= a^\\var{x-y}.
\\end{align}
Therefore,
\n\\begin{align}
\\frac{\\var{b}a^\\var{x}}{\\var{g}a^\\var{y}} &= \\simplify{{b}/{g}} \\times \\simplify{a^{{x}-{y}}}\\\\
&= \\simplify{{b}/{g}*a^{x-y}}.
\\end{align}
Alternatively,
\nUsing the rule of indices: $a^{-m} = \\displaystyle\\frac{1}{a^{m}}$, we can rewrite the question as:
\n\\begin{align}
\\frac{\\var{b}a^\\var{x}}{\\var{g}a^\\var{y}} &= \\simplify{{b}/{g}} \\times \\frac{a^\\var{x}}{a^\\var{y}}\\\\
&= \\simplify{{b}/{g}} \\times a^\\var{x} \\times a^{-\\var{y}}.
\\end{align}
And then using the rule: $a^m \\times a^n = a^{m+n}$, this becomes:
\n\\begin{align}
\\simplify{{b}/{g}} \\times a^\\var{x} \\times a^{-\\var{y}} &= \\simplify{{b}/{g}} \\times a^\\simplify[all,!collectNumbers]{{x}+(-{y})}\\\\
&= \\simplify{{b}/{g}*a^{x-y}}.
\\end{align}
The question asks us to simplify $(\\simplify{{c}*a^{p}})^{\\var{q}}$.
\nTo do this we use the rules:
\n\\[(a^{m})^{n} = a^{mn},\\]
\n\\[(ab)^m = a^mb^m.\\]
\nWe can then expand the equation as
\n\\[(\\simplify{{c}*a^{p}})^{\\var{q}}= \\var{c}^{\\var{q}} \\times (a^{\\var{p}})^{\\var{q}}.\\]
\nThen using the rule of indices mentioned previously,
\n\\[
\\begin{align}
(\\simplify{{c}*a^{p}})^{\\var{q}}&= \\simplify{{c}^{q}} \\times a^\\var{p*q}\\\\
&= \\simplify{{c}^{q}*a^{p*q}}.
\\end{align}
\\]
The question asks us to simplify $\\sqrt[\\var{d}]{\\var{x}^\\var{d}a}$.
\nTo do this we use the rules:
\n\\[a^\\frac{1}{m} = \\sqrt[m]{a},\\]
\n\\[(ab)^m = a^mb^m.\\]
\nWe can expand the expression as follows:
\n\\[
\\begin{align}
\\sqrt[\\var{d}]{a} &= (\\simplify{a})^\\frac{1}{\\var{d}}\\\\
&= a^\\frac{1}{\\var{d}}.
\\end{align}
\\]
The question requires us to simplify $\\sqrt[\\var{c}]{a^\\var{q}}$.
\nHere, we use the rule of indices: $a^\\frac{n}{m} = \\sqrt[m]{a^n}$, allowing us to expand the expression as follows:
\n\\[
\\begin{align}
\\sqrt[\\var{c}]{\\simplify{a^{q}}} &= \\simplify[fractionnumbers,all]{(a^{q})^{{1}/{{c}}}}\\\\
&= \\simplify[fractionnumbers,all]{a^{{q}/{c}}}.
\\end{align}
\\]