// Numbas version: finer_feedback_settings {"name": "Logarithms", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Logarithms", "tags": [], "metadata": {"description": "\n \t\t
Express $\\log_a(x^{c}y^{d})$ in terms of $\\log_a(x)$ and $\\log_a(y)$.
\n \t\t\n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "
Answer the following question on logarithms.
", "advice": "The rules for combining logs are
\n\\[\\begin{eqnarray*} \\log_a(bc)&=&\\log_a(b)+\\log_a(c)\\\\ \\\\ \\log_a\\left(\\frac{b}{c}\\right)&=&\\log_a(b)-\\log_a(c)\\\\ \\\\ \\log_a(b^r)&=&r\\log_a(b) \\end{eqnarray*} \\]
\n
Using these rules gives:
\\[ \\begin{eqnarray*} \\log_a(x^{\\var{a1}}y^{\\var{b1}})&=&\\log_a(x^{\\var{a1}})+\\log_a(y^{\\var{b1}})\\\\ &=&\\var{a1}\\log_a(x)+\\var{b1}\\log_a(y) \\end{eqnarray*} \\]
Express the following in terms of $\\log_a(x)$ and $\\log_a(y)$
\n\\[\\log_a(x^{\\var{a1}}y^{\\var{b1}})=\\alpha\\log_a(x)+\\beta\\log_a(y)\\]
\n$\\alpha=\\;\\;$[[0]], $\\beta=\\;\\;$[[1]]
\n ", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 0.5, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{a1}", "maxValue": "{a1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 0.5, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{b1}", "maxValue": "{b1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Mario Orsi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/427/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Leonardo Juliano", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3600/"}]}]}], "contributors": [{"name": "Mario Orsi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/427/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Leonardo Juliano", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3600/"}]}