// Numbas version: finer_feedback_settings {"name": "Logarithms", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Logarithms", "tags": [], "metadata": {"description": "\n \t\t

Express $\\log_a(x^{c}y^{d})$ in terms of $\\log_a(x)$ and $\\log_a(y)$. 

\n \t\t

 

\n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Answer the following question on logarithms.

", "advice": "

The rules for combining logs are

\n

\\[\\begin{eqnarray*} \\log_a(bc)&=&\\log_a(b)+\\log_a(c)\\\\ \\\\ \\log_a\\left(\\frac{b}{c}\\right)&=&\\log_a(b)-\\log_a(c)\\\\ \\\\ \\log_a(b^r)&=&r\\log_a(b) \\end{eqnarray*} \\]

\n


Using these rules gives:
\\[ \\begin{eqnarray*} \\log_a(x^{\\var{a1}}y^{\\var{b1}})&=&\\log_a(x^{\\var{a1}})+\\log_a(y^{\\var{b1}})\\\\ &=&\\var{a1}\\log_a(x)+\\var{b1}\\log_a(y) \\end{eqnarray*} \\]

", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a1": {"name": "a1", "group": "Ungrouped variables", "definition": "s1*random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "random(2..15)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "s4*random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "precround((a2-1)/b2,0)", "description": "", "templateType": "anything", "can_override": false}, "s4": {"name": "s4", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "1+b2*random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["c", "d", "f", "s1", "s4", "a1", "a2", "b1", "b2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n

Express the following in terms of $\\log_a(x)$ and $\\log_a(y)$

\n

\\[\\log_a(x^{\\var{a1}}y^{\\var{b1}})=\\alpha\\log_a(x)+\\beta\\log_a(y)\\]

\n

$\\alpha=\\;\\;$[[0]], $\\beta=\\;\\;$[[1]]

\n ", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 0.5, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{a1}", "maxValue": "{a1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 0.5, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{b1}", "maxValue": "{b1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Mario Orsi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/427/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Leonardo Juliano", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3600/"}]}]}], "contributors": [{"name": "Mario Orsi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/427/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Leonardo Juliano", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3600/"}]}