// Numbas version: exam_results_page_options {"name": "W2a: Solve an equation with reciprocals-2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "preventleave": false, "showfrontpage": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variables": {"a": {"name": "a", "group": "Ungrouped variables", "templateType": "anything", "description": "", "definition": "random(2..9 except [s,abs(b)])"}, "s": {"name": "s", "group": "Ungrouped variables", "templateType": "anything", "description": "", "definition": "random(2..8)"}, "an1": {"name": "an1", "group": "Ungrouped variables", "templateType": "anything", "description": "", "definition": "b*t-s*d"}, "b": {"name": "b", "group": "Ungrouped variables", "templateType": "anything", "description": "", "definition": "random(-9..9 except [0,s])"}, "an2": {"name": "an2", "group": "Ungrouped variables", "templateType": "anything", "description": "", "definition": "s*c-a*t"}, "d": {"name": "d", "group": "Ungrouped variables", "templateType": "anything", "description": "", "definition": "random(-9..9 except [0,t])"}, "c": {"name": "c", "group": "Ungrouped variables", "templateType": "anything", "description": "", "definition": "random(2..9 except [s,abs(d),a*t/s])"}, "t": {"name": "t", "group": "Ungrouped variables", "templateType": "anything", "description": "", "definition": "random(2..8 except s)"}}, "preamble": {"css": "", "js": ""}, "extensions": [], "functions": {}, "parts": [{"adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "marks": 0, "useCustomName": false, "showFeedbackIcon": true, "prompt": "\n

\$\\simplify{{s} / ({a} * x + {b}) = {t} / ({c} * x + {d})}\$

\n

$x=\\;$ [[0]]

\n

If you want help in solving the equation, click on Show steps. If you do so then you will lose 1 mark.

\n \n \n ", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "unitTests": [], "gaps": [{"customMarkingAlgorithm": "", "vsetRangePoints": 5, "marks": 2, "answer": "{an1}/{an2}", "valuegenerators": [], "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "unitTests": [], "extendBaseMarkingAlgorithm": true, "scripts": {}, "checkingAccuracy": 0.0001, "checkingType": "absdiff", "type": "jme", "answerSimplification": "std", "adaptiveMarkingPenalty": 0, "useCustomName": false, "variableReplacements": [], "failureRate": 1, "showFeedbackIcon": true, "vsetRange": [0, 1], "notallowed": {"message": "

Input as a fraction or an integer, not as a decimal.

", "partialCredit": 0, "strings": ["."], "showStrings": false}, "customName": "", "showPreview": true, "checkVariableNames": false}], "sortAnswers": false, "scripts": {}, "customName": "", "stepsPenalty": 1, "steps": [{"adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "marks": 0, "useCustomName": false, "showFeedbackIcon": true, "prompt": "\n

Rearrange the equation by cross-multiplying to get:
\$\\simplify{{s}*({c} * x + {d}) = {t} *({a} * x + {b})}\$
Multiply out to get \$\\simplify{{s*c}*x+{s*d}={t*a}*x+{t*b}}.\$ Now solve this linear equation.

\n \n ", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "unitTests": [], "scripts": {}, "customName": "", "type": "information"}], "type": "gapfill"}], "tags": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Solve for $x$: $\\displaystyle \\frac{s}{ax+b} = \\frac{t}{cx+d}$

"}, "statement": "\n

Solve the following equation for $x$.

\n

Input your answer as a fraction or an integer as appropriate and not as a decimal.

\n ", "variablesTest": {"maxRuns": 100, "condition": ""}, "name": "W2a: Solve an equation with reciprocals-2", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Timur Zaripov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3272/"}], "variable_groups": [], "advice": "

Rearrange the equation by cross-multiplying to get:
\$\\simplify{{s}*({c} * x + {d}) = {t} *({a} * x + {b})}\$
Multiply out to get \$\\simplify{{s*c}*x+{s*d}={t*a}*x+{t*b}}.\$ Now this is a linear equation which is solved in the following steps: \$\\simplify{{s*c-t*a}*x={t*b-s*d}}\$ and then \$\\simplify{x={t*b-s*d}/{s*c-t*a}}.\$

", "ungrouped_variables": ["a", "c", "b", "d", "s", "t", "an2", "an1"]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Timur Zaripov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3272/"}]}