// Numbas version: finer_feedback_settings {"name": "Eigenvalues/Eigenvector of a 2x2 matrix", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "statement": "

Given the matrix

\n

\\(A =\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\)

", "extensions": [], "variables": {"k": {"templateType": "randrange", "definition": "random(1 .. 6#1)", "description": "", "name": "k", "group": "Ungrouped variables"}, "a21": {"templateType": "randrange", "definition": "random(1 .. 5#1)", "description": "", "name": "a21", "group": "Ungrouped variables"}, "a11": {"templateType": "randrange", "definition": "random(1 .. 10#1)", "description": "", "name": "a11", "group": "Ungrouped variables"}, "a12": {"templateType": "anything", "definition": "k*(a11-c1)", "description": "", "name": "a12", "group": "Ungrouped variables"}, "c1": {"templateType": "randrange", "definition": "random(14 .. 20#1)", "description": "", "name": "c1", "group": "Ungrouped variables"}, "a22": {"templateType": "anything", "definition": "{k}*{a21}+{c1}", "description": "", "name": "a22", "group": "Ungrouped variables"}, "lambda2": {"templateType": "anything", "definition": "max({c1},{a11}+{a22}-{c1})", "description": "", "name": "lambda2", "group": "Ungrouped variables"}, "lambda1": {"templateType": "anything", "definition": "min({c1},{a11}+{a22}-{c1})", "description": "", "name": "lambda1", "group": "Ungrouped variables"}}, "preamble": {"css": "", "js": ""}, "advice": "

The eigenvalues of a matrix are the values of \\(\\lambda\\) that satisfy the relation

\n

\\(|A-\\lambda I| = 0\\)

\n

\\(\\begin{vmatrix} \\var{a11}-\\lambda&\\var{a12}\\\\ \\var{a21}&\\var{a22}-\\lambda\\\\ \\end{vmatrix}=0\\)

\n

This gives:

\n

\\((\\var{a11}-\\lambda)*(\\var{a22}-\\lambda)-(\\var{a12})*(\\var{a21})=0\\)

\n

\\(\\lambda^2-\\simplify{{a11}+{a22}}\\lambda+\\simplify{{a11}*{a22}-{a21}*{a12}}=0\\)

\n

This can be solved using factorisation or by the quadratic formula to give:

\n

\\(\\lambda_1 =\\var{lambda1}\\) and \\(\\lambda_2 =\\var{lambda2}\\)

\n

An eigenvector \\({\\bf v}=\\begin{pmatrix} x\\\\ y\\\\ \\end{pmatrix}\\) corresponding to an eigenvalue \\(\\lambda\\) must satisfy the relation:  \\((A-\\lambda I){\\bf v} = {\\bf 0}\\)

\n

so for \\(\\lambda_1=\\var{lambda1}\\)  

\n

\\(\\begin{pmatrix} \\simplify{{a11}-{lambda1}}&\\var{a12}\\\\ \\var{a21}&\\simplify{{a22}-{lambda1}}\\\\ \\end{pmatrix}\\begin{pmatrix} x\\\\ \\var{a21}\\\\ \\end{pmatrix}={\\bf 0}\\)           

\n

thus

\n

\\(\\var{a21}x+\\simplify{{a22}-{lambda1}}*\\var{a21}=0\\)

\n

\\(\\Rightarrow ~ \\var{a21}x=-\\simplify{({a22}-{lambda1})*{a21}}\\)

\n

\\(\\Rightarrow ~ x=-\\simplify{({a22}-{lambda1})}\\)

\n

", "rulesets": {}, "variablesTest": {"maxRuns": 100, "condition": ""}, "variable_groups": [], "metadata": {"description": "

This question concerns the evaluation of the eigenvalues and corresponding eigenvectors of a 2x2 matrix.

", "licence": "Creative Commons Attribution 4.0 International"}, "tags": [], "ungrouped_variables": ["a11", "c1", "a12", "k", "a21", "a22", "lambda1", "lambda2"], "name": "Eigenvalues/Eigenvector of a 2x2 matrix", "parts": [{"customName": "", "marks": 0, "scripts": {}, "gaps": [{"marks": 1, "unitTests": [], "precisionMessage": "You have not given your answer to the correct precision.", "variableReplacements": [], "adaptiveMarkingPenalty": 0, "precision": 0, "notationStyles": ["plain", "en", "si-en"], "minValue": "lambda1", "precisionType": "dp", "showFeedbackIcon": true, "customMarkingAlgorithm": "", "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "customName": "", "scripts": {}, "correctAnswerFraction": false, "mustBeReducedPC": 0, "strictPrecision": false, "extendBaseMarkingAlgorithm": true, "showPrecisionHint": false, "precisionPartialCredit": 0, "useCustomName": false, "maxValue": "lambda1", "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain", "allowFractions": false}, {"marks": 1, "unitTests": [], "precisionMessage": "You have not given your answer to the correct precision.", "variableReplacements": [], "adaptiveMarkingPenalty": 0, "precision": 0, "notationStyles": ["plain", "en", "si-en"], "minValue": "lambda2", "precisionType": "dp", "showFeedbackIcon": true, "customMarkingAlgorithm": "", "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "customName": "", "scripts": {}, "correctAnswerFraction": false, "mustBeReducedPC": 0, "strictPrecision": false, "extendBaseMarkingAlgorithm": true, "showPrecisionHint": false, "precisionPartialCredit": 0, "useCustomName": false, "maxValue": "lambda2", "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain", "allowFractions": false}], "variableReplacements": [], "adaptiveMarkingPenalty": 0, "sortAnswers": false, "extendBaseMarkingAlgorithm": true, "unitTests": [], "showFeedbackIcon": true, "prompt": "

Calculate the eigenvalues of the matrix A

\n

\\(\\lambda_1\\) is the lesser of the two eigenvalues and \\(\\lambda_2\\) is the greater of the two eigenvalues;

\n

\\(\\lambda_1\\) = [[0]]

\n

\\(\\lambda_2\\) = [[1]]

", "useCustomName": false, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "type": "gapfill", "showCorrectAnswer": true}, {"customName": "", "marks": 0, "scripts": {}, "gaps": [{"marks": 1, "unitTests": [], "precisionMessage": "You have not given your answer to the correct precision.", "variableReplacements": [], "adaptiveMarkingPenalty": 0, "precision": 0, "notationStyles": ["plain", "en", "si-en"], "minValue": "{lambda1}-{a22}", "precisionType": "dp", "showFeedbackIcon": true, "customMarkingAlgorithm": "", "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "customName": "", "scripts": {}, "correctAnswerFraction": false, "mustBeReducedPC": 0, "strictPrecision": false, "extendBaseMarkingAlgorithm": true, "showPrecisionHint": false, "precisionPartialCredit": 0, "useCustomName": false, "maxValue": "{lambda1}-{a22}", "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain", "allowFractions": false}], "variableReplacements": [], "adaptiveMarkingPenalty": 0, "sortAnswers": false, "extendBaseMarkingAlgorithm": true, "unitTests": [], "showFeedbackIcon": true, "prompt": "

For the lesser eigenvalue \\(\\lambda_1\\) the corresponding eigenvector is \\(v_1=\\begin{pmatrix}x\\\\ \\var{a21}\\\\ \\end{pmatrix}\\)

\n

Enter the value for \\(x=\\) [[0]]

\n

", "useCustomName": false, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "type": "gapfill", "showCorrectAnswer": true}], "type": "question", "contributors": [{"name": "Peter Johnston", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/771/"}, {"name": "Owen Jepps", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1195/"}, {"name": "Timothy Gould", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1466/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}, {"name": "Thomas Waters", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3649/"}]}]}], "contributors": [{"name": "Peter Johnston", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/771/"}, {"name": "Owen Jepps", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1195/"}, {"name": "Timothy Gould", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1466/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}, {"name": "Thomas Waters", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3649/"}]}