// Numbas version: exam_results_page_options {"name": "Maths_and_Stats's copy of Interactive Newton-Raphson method", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"ungrouped_variables": ["a", "m", "ans1", "ans", "b", "tol", "tans", "maxy", "results"], "parts": [{"customMarkingAlgorithm": "", "type": "gapfill", "scripts": {}, "extendBaseMarkingAlgorithm": true, "stepsPenalty": 0, "prompt": "\n\t\t\t

This equation has a root in the range $0 \\lt x \\lt 1$.

\n\t\t\t

Using the Newton-Raphson formula, if $x_n$ is the $n$th estimate for this root, show that the next estimate can be written in the form \$x_{n+1}= \\frac{p(x_n)}{g'(x_n)}\$
Enter $p(x_n)$ and $g'(x_n)$ in the boxes below.

\n\t\t\t

Please note that if you enter a function of the form $xe^{ax}$, then you must input it as $x*e^{ax}$.

\n\t\t\t

$p(x_n)=\\;\\;$[] In your answer use $x$ instead of $x_n$.

\n\t\t\t

$g'(x_n)=\\;\\;$[] In your answer use $x$ instead of $x_n$.

\n\t\t\t

If you have forgotten the Newton-Raphson formula you can click on Steps to see it. You will not lose any marks in doing so.

\n\t\t\t \n\t\t\t", "showCorrectAnswer": true, "gaps": [{"answerSimplification": "std", "vsetRangePoints": 5, "failureRate": 1, "checkVariableNames": false, "type": "jme", "customName": "", "extendBaseMarkingAlgorithm": true, "vsetRange": [1, 1.5], "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "scripts": {}, "valuegenerators": [{"name": "x", "value": ""}], "checkingAccuracy": 0.0001, "answer": "(((({m} * x) -1) * Exp(({m} * x))) + {a})", "showCorrectAnswer": true, "showFeedbackIcon": true, "showPreview": true, "checkingType": "absdiff", "marks": 1, "unitTests": [], "variableReplacementStrategy": "originalfirst", "useCustomName": false, "variableReplacements": []}, {"answerSimplification": "std", "vsetRangePoints": 5, "failureRate": 1, "checkVariableNames": false, "type": "jme", "customName": "", "extendBaseMarkingAlgorithm": true, "vsetRange": [0, 1], "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "scripts": {}, "valuegenerators": [{"name": "x", "value": ""}], "checkingAccuracy": 0.001, "answer": "(({m} * Exp(({m} * x))) + {b})", "showCorrectAnswer": true, "showFeedbackIcon": true, "showPreview": true, "checkingType": "absdiff", "marks": 1, "unitTests": [], "variableReplacementStrategy": "originalfirst", "useCustomName": false, "variableReplacements": []}], "showFeedbackIcon": true, "customName": "", "marks": 0, "unitTests": [], "variableReplacementStrategy": "originalfirst", "steps": [{"vsetRangePoints": 5, "failureRate": 1, "prompt": "

Recall that the Newton-Raphson method is defined by:
\$x_{n+1}=x_n-\\frac{g(x_n)}{g'(x_n)}\$
where we would like to find the root of the equation $g(x)=0$

", "checkVariableNames": false, "type": "jme", "customName": "", "extendBaseMarkingAlgorithm": true, "vsetRange": [0, 1], "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "scripts": {}, "valuegenerators": [], "checkingAccuracy": 0.001, "answer": "", "showCorrectAnswer": true, "showFeedbackIcon": true, "showPreview": true, "checkingType": "absdiff", "marks": 0, "unitTests": [], "variableReplacementStrategy": "originalfirst", "useCustomName": false, "variableReplacements": []}], "useCustomName": false, "sortAnswers": false, "adaptiveMarkingPenalty": 0, "variableReplacements": []}, {"customMarkingAlgorithm": "", "type": "gapfill", "scripts": {}, "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "prompt": "\n\t\t\t

If $x_0=2\\;\\;\\;$what is $x_1$ correct to $4$ decimal places?

\n\t\t\t

$x_1=\\;\\;$ []

\n\t\t\t

\n\t\t\t", "showCorrectAnswer": true, "gaps": [{"correctAnswerFraction": false, "showFractionHint": true, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "extendBaseMarkingAlgorithm": true, "useCustomName": false, "mustBeReduced": false, "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "minValue": "ans-tol", "scripts": {}, "mustBeReducedPC": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "maxValue": "ans+tol", "variableReplacements": [], "unitTests": [], "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": false, "marks": 1}], "customName": "", "marks": 0, "unitTests": [], "variableReplacementStrategy": "originalfirst", "useCustomName": false, "sortAnswers": false, "adaptiveMarkingPenalty": 0, "variableReplacements": []}], "functions": {"fun": {"type": "number", "definition": "((m*c-1)*e^(m*c)+a)/(m*e^(m*c)+b)", "language": "jme", "parameters": [["m", "number"], ["b", "number"], ["a", "number"], ["c", "number"]]}, "nr": {"type": "list", "definition": "if(n=5,l+[fun(m,b,a,c)]+[fun(m,b,a,fun(m,b,a,c))],nr(m,b,a,fun(m,b,a,c),n-1,l+[c]))", "language": "jme", "parameters": [["m", "number"], ["b", "number"], ["a", "number"], ["c", "number"], ["n", "number"], ["l", "list"]]}, "funfornr": {"type": "html", "definition": "\n\t\t\tvar div = Numbas.extensions.jsxgraph.makeBoard('600px','200px',{boundingBox:[0,10,1,-8],grid:false});\n\t\t\t var board = div.board;\n\t\t\t var m = Numbas.jme.unwrapValue(scope.variables.m);\n\t\t\t var be = Numbas.jme.unwrapValue(scope.variables.b);\n\t\t\t var al = Numbas.jme.unwrapValue(scope.variables.a);\n\t\t\t var ans = Numbas.jme.unwrapValue(scope.variables.ans1)\n\t\t\t var a = board.create('point',[ans,0],'$A$');\n\t\t\t \n\t\t\t var graph = board.create('functiongraph',function(x){return Math.exp(m*x)+be*x-al});\n\t\t\t \n\t\t\t return div;\n\t\t\t \n\t\t\t", "language": "javascript", "parameters": []}, "test": {"type": "html", "definition": "\n\t\t\tvar div = Numbas.extensions.jsxgraph.makeBoard('600px','400px', {boundingbox:[0,maxy,3,-30], axis:false});\n\t\t\t var brd=div.board;\n\t\t\t // Initial function term\n\t\t\t var term = function(x) { return Math.exp(m*x)+b*x-a; };\n\t\t\t var graph = function(x) { return term(x); };\n\t\t\t // Recursion depth\n\t\t\t var steps = 4;\n\t\t\t // Start value\n\t\t\t var s = 2;\n\t\t\t \n\t\t\t //for (i = 0; i < steps; i++) {\n\t\t\t //document.write('x' + i + ' = ');\n\t\t\t //}\n\t\t\t \n\t\t\t var i;\n\t\t\t var ax = brd.create('axis', [[0,0], [1,0]], {strokeColor: 'black'});\n\t\t\t var ay = brd.create('axis', [[0,0], [0,1]], {strokeColor: 'black'});\n\t\t\t \n\t\t\t var g = brd.create('functiongraph', [function(x){return graph(x);}],{strokeWidth: 2, dash:0});\n\t\t\t var x = brd.create('glider',[s,0,ax], {name: 'x_{0}', strokeColor: 'magenta', fillColor: 'yellow'});\n\t\t\t \n\t\t\t newton(x, steps, brd);\t\n\t\t\t \n\t\t\t //function xval() {\n\t\t\t //for (i = 0; i < steps; i++)\n\t\t\t //document.getElementById('xv' + i).innerHTML = (brd.select('x_{' + i + '}').X()).toFixed(14);\n\t\t\t //}\n\t\t\t \n\t\t\t //brd.addHook(xval);\n\t\t\t \n\t\t\t function newton(p, i, board) {\t\n\t\t\t board.suspendUpdate();\t\n\t\t\t if(i>0) {\n\t\t\t var f = board.create('glider',[function(){return p.X();}, function(){return graph(p.X())},g], {name: '', style: 3, strokeColor: 'green', fillColor: 'yellow'});\n\t\t\t var l = board.create('line', [p,f],{strokeWidth: 0.5, dash: 1, straightFirst: false, straightLast: false, strokeColor: 'black'});\n\t\t\t var t = board.create('tangent',[f],{strokeWidth: 0.5, strokeColor: '#0080c0', dash: 0});\n\t\t\t var x = board.create('intersection',[ax,t,0],{name: 'x_{'+(steps-i+1) + '}', style: 4, strokeColor: 'magenta', fillColor: 'yellow'});\n\t\t\t newton(x,--i, board);\n\t\t\t }\n\t\t\t board.unsuspendUpdate(); \n\t\t\t \n\t\t\t \n\t\t\t }\t\n\t\t\t return div;\n\t\t\t", "language": "javascript", "parameters": [["m", "number"], ["b", "number"], ["a", "number"], ["maxy", "number"]]}}, "advice": "\n\t

a)

\n\t

Recall that the Newton-Raphson method is defined by:
\$x_{n+1}=x_n-\\frac{g(x_n)}{g'(x_n)}\$
where we would like to find the root of the equation $g(x)=0$

\n\t

In this question we have:
\$\\simplify[std]{g(x) = Exp({m} * x) + {b} * x + { -a}} \\Rightarrow \\simplify[std]{g'(x) = {m}*Exp({m} * x) + {b}}\$
Substituting these expressions into the formula we have:
\$x_{n+1} =\\simplify[std]{ x_n -((Exp({m} * x_n) + {b} * x_n + { -a}) / ({m} * Exp({m} * x _n) + {b}))}\$

\n\t

which can be rearranged to give:
\$x _{n + 1} = \\simplify[std]{(({m} * x_n -1) * Exp({m} * x _n) + {a}) / ({m} * Exp({m} * x _n) + {b})}\$

\n\t

(In your answers you would input $x$ rather than $x_n$.)

\n\t

In the following let $\\displaystyle f(x)=\\simplify[std]{ (({m} * x -1) * Exp({m} * x ) + {a}) / ({m} * Exp({m} * x ) + {b})}$

\n\t

b)

\n\t

If $x_0=2$ then $x_1$ is simply given by:
\$\\simplify[std]{x_1 = (({2*m} -1) * Exp({2*m}) + {a}) / ({m} * Exp({2*m}) + {b})}\$

\n\t

which to 4 decimal places is: $\\;\\;x_1= \\var{ans}$

\n\t

We find on running the iteration that the first six values are:

\n\t

\\\begin{align}x_1&=f(x_0)=f(2)&=\\var{results}\\\\x_2&=f(x_1)=f(\\var{results})&=\\var{results}\\\\x_3&=f(x_2)=f(\\var{results})&=\\var{results}\\\\x_4&=f(x_3)=f(\\var{results})&=\\var{results}\\\\x_5&=f(x_4)=f(\\var{results})&=\\var{results}\\\\x_6&=f(x_5)=f(\\var{results})&=\\var{results}\\end{align}\

\n\t

So the solution to the equation to four decimal places for $0 \\le x \\le 1$ is $x=\\var{precround(ans1,4)}$

\n\t

Here we see the graph of $\\simplify{e^({m}*x)+{b}*x-{a}}$ and the first four successive approximations to the root:

\n\t

{test(m,b,a,maxy)}

\n\t

\n\t

Note that you can slide the first approximation $x_0$ along the x-axis to see the effect of changing the starting value.

\n\t", "preamble": {"js": "", "css": ""}, "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"results": {"group": "Ungrouped variables", "definition": "nr(m,b,a,2,10,[])", "name": "results", "description": "", "templateType": "anything"}, "m": {"group": "Ungrouped variables", "definition": "random(1.5..2#0.1)", "name": "m", "description": "", "templateType": "anything"}, "maxy": {"group": "Ungrouped variables", "definition": "ceil(e^(2*m)+2*b-a)+5", "name": "maxy", "description": "", "templateType": "anything"}, "ans": {"group": "Ungrouped variables", "definition": "precround(tans,4)", "name": "ans", "description": "", "templateType": "anything"}, "b": {"group": "Ungrouped variables", "definition": "random((a+1)..9)", "name": "b", "description": "", "templateType": "anything"}, "a": {"group": "Ungrouped variables", "definition": "random(8..15)", "name": "a", "description": "", "templateType": "anything"}, "ans1": {"group": "Ungrouped variables", "definition": "precround(results,4)", "name": "ans1", "description": "", "templateType": "anything"}, "tol": {"group": "Ungrouped variables", "definition": "0", "name": "tol", "description": "", "templateType": "anything"}, "tans": {"group": "Ungrouped variables", "definition": "((2*m-1)*exp(2*m)+a)/(m*exp(2*m)+b)", "name": "tans", "description": "", "templateType": "anything"}}, "tags": [], "statement": "\n\t

Consider the following equation.

\n\t

\$\\simplify[std]{e^({m}x)+{b}x-{a}=0}\$

\n\t

Find the approximate solution in the range $0 \\le x \\le 1$ by using the Newton-Raphson method.

\n\t

The following diagram demonstrates the method.

\n\t

$x_0$ is the starting value, you can slide it along the x-axis to see the effect of changing it.

\n\t

\n\t

{test(m,b,a,maxy)}

\n\t

\n\t

\n\t

\n\t", "name": "Maths_and_Stats's copy of Interactive Newton-Raphson method", "rulesets": {"std": ["all", "!collectNumbers", "!noLeadingMinus"]}, "extensions": ["jsxgraph"], "variable_groups": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "\n\t\t

Write down the Newton-Raphson formula for finding a numerical solution to the equation $e^{mx}+bx-a=0$. If $x_0=1$ find $x_1$.

\n\t\t

Included in the Advice of this question are:

\n\t\t

6 iterations of the method.

\n\t\t

Graph of the NR process using jsxgraph. Also user interaction allowing change of starting value and its effect on the process.

\n\t\t"}, "contributors": [{"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/", "name": "Christian Lawson-Perfect"}, {"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/", "name": "Chris Graham"}, {"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3596/", "name": "Maths_and_Stats Advice"}]}]}], "contributors": [{"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/", "name": "Christian Lawson-Perfect"}, {"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/", "name": "Chris Graham"}, {"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3596/", "name": "Maths_and_Stats Advice"}]}