// Numbas version: finer_feedback_settings {"name": "Matt's copy of Ex 6 Cofactors, Determinant and Inverse of a 3x3 matrix", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variables": {"cof22": {"name": "cof22", "definition": "a11*a33-a31*a13", "group": "cofactors", "description": "", "templateType": "anything"}, "cof23": {"name": "cof23", "definition": "a12*a31-a11*a32", "group": "cofactors", "description": "
cof23
", "templateType": "anything"}, "a23": {"name": "a23", "definition": "random(-4..4)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "a13": {"name": "a13", "definition": "random(-5..10)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "cof32": {"name": "cof32", "definition": "a13*a21-a11*a23", "group": "cofactors", "description": "", "templateType": "anything"}, "a11": {"name": "a11", "definition": "random(-3..3)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "cof33": {"name": "cof33", "definition": "a11*a22-a12*a21", "group": "cofactors", "description": "", "templateType": "anything"}, "a33": {"name": "a33", "definition": "random(0..20)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "cof31": {"name": "cof31", "definition": "a12*a23-a22*a13", "group": "cofactors", "description": "", "templateType": "anything"}, "a22": {"name": "a22", "definition": "random(0..5 except(a21*a12/a11))", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "cof11": {"name": "cof11", "definition": "a22*a33-a32*a23", "group": "cofactors", "description": "", "templateType": "anything"}, "inverseA": {"name": "inverseA", "definition": "matrix([cof11,cof21,cof31],[cof12,cof22,cof32],[cof13,cof23,cof33])/det(matrixA)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "cof12": {"name": "cof12", "definition": "a23*a31-a21*a33", "group": "cofactors", "description": "", "templateType": "anything"}, "a12": {"name": "a12", "definition": "random(0..10)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "matrixA": {"name": "matrixA", "definition": "matrix([a11,a12,a13],[a21,a22,a23],[a31,a32,a33])", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "cof21": {"name": "cof21", "definition": "a32*a13-a12*a33", "group": "cofactors", "description": "", "templateType": "anything"}, "a21": {"name": "a21", "definition": "random(0..10)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "a31": {"name": "a31", "definition": "random(0..10)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "cof13": {"name": "cof13", "definition": "a21*a32-a31*a22", "group": "cofactors", "description": "", "templateType": "anything"}, "a32": {"name": "a32", "definition": "random(0..10)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}}, "extensions": [], "variable_groups": [{"name": "cofactors", "variables": ["cof11", "cof12", "cof13", "cof21", "cof22", "cof23", "cof31", "cof32", "cof33"]}, {"name": "Unnamed group", "variables": []}], "preamble": {"js": "", "css": ""}, "advice": "If \\[ A=\\left( \\begin{array}{ccc}
a & b & c \\\\d & e&f\\\\ g&h&j \\end{array} \\right),\\]
Cofactors are given by \\[ A=\\left( \\begin{array}{ccc}
a & b & c \\\\d & e&f\\\\ g&h&j \\end{array} \\right),\\]
Cof11 =\\[ +\\left| \\begin{array}{ccc}
e&f\\\\ h&j \\end{array} \\right|,\\]
Cof12 =\\[ -\\left| \\begin{array}{ccc}
d & f\\\\ g&j \\end{array} \\right|,\\]
Cof13 =\\[ +\\left| \\begin{array}{ccc}
d & e\\ g&h\\end{array} \\right|,\\]
Cof21 =\\[ -\\left| \\begin{array}{ccc}
b & c \\\\h&j \\end{array} \\right|,\\]
Cof22 =\\[ +\\left| \\begin{array}{ccc}
a & c \\\\ g&j \\end{array} \\right|,\\]
Cof23 =\\[ -\\left| \\begin{array}{ccc}
a & b \\\\g&h\\end{array} \\right|,\\]
Cof31 =\\[ +=\\left| \\begin{array}{ccc}
b & c \\\\e&f\\end{array} \\right|,\\]
Cof32 =\\[ -\\left| \\begin{array}{ccc}
a & c \\\\d & f\\end{array} \\right|,\\]
Cof33 =\\[ +\\left| \\begin{array}{ccc}
a & b\\\\d & e \\end{array} \\right|,\\]
Then, the determinant of A is given by the sum of the product of any row ( or column) elements by their cofactors
\ne.g row 1 determinant = a*cof11+b*cof12+c*cof13
\nand the inverse of A is given by the ratio of the adjoint(A) and the deteminant of A
\nwhere adjoint A= \\left( \\begin{array}{ccc}
cof11 & cof21 & cof31 \\\\cof12 & cof22&cof32\\\\ cof13&cof23&cof33 \\end{array} \\right),\\]
inverse of A=\\[ \\frac{1}{det(A)}*\\left( \\begin{array}{ccc}
cof11 & cof21 & cof31 \\\\cof12 & cof22&cof32\\\\ cof13&cof23&cof33 \\end{array} \\right),\\]
\n", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "
Cofactors Determinant and inverse of a 3x3 matrix.
"}, "parts": [{"prompt": "\nCalculate the nine cofactors of A=$\\var{matrixA}$?
\n$A _{11}$ cofactor in position 1,1[[0]]
\n$A_{12}$ cofactor in position 1,2[[1]]
\n$A_{13}$ cofactor in position 1,3[[2]]
\n$A_{21}$ cofactor in position 2,1[[3]]
\n$A_{22}$ cofactor in position 2,2[[4]]
\n$A_{23}$ cofactor in position 2,3[[5]]
\n$A_{31}$ cofactor in position 3,1[[6]]
\n$A_{32}$ cofactor in position 3,2[[7]]
\n$A_{33}$ cofactor in position 3,3[[8]]
", "marks": 0, "unitTests": [], "sortAnswers": false, "showCorrectAnswer": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "customName": "", "adaptiveMarkingPenalty": 0, "extendBaseMarkingAlgorithm": true, "useCustomName": false, "showFeedbackIcon": true, "gaps": [{"correctAnswerFraction": false, "useCustomName": false, "adaptiveMarkingPenalty": 0, "mustBeReduced": false, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "scripts": {}, "marks": "0.2", "maxValue": "{cof11}", "showCorrectAnswer": true, "showFractionHint": true, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": true, "mustBeReducedPC": 0, "extendBaseMarkingAlgorithm": true, "unitTests": [], "notationStyles": ["plain", "en", "si-en"], "minValue": "{cof11}", "variableReplacements": [], "type": "numberentry"}, {"correctAnswerFraction": false, "useCustomName": false, "adaptiveMarkingPenalty": 0, "mustBeReduced": false, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "scripts": {}, "marks": "0.2", "maxValue": "{cof12}", "showCorrectAnswer": true, "showFractionHint": true, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": false, "mustBeReducedPC": 0, "extendBaseMarkingAlgorithm": true, "unitTests": [], "notationStyles": ["plain", "en", "si-en"], "minValue": "{cof12}", "variableReplacements": [], "type": "numberentry"}, {"correctAnswerFraction": false, "useCustomName": false, "adaptiveMarkingPenalty": 0, "mustBeReduced": false, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "scripts": {}, "marks": "0.2", "maxValue": "{cof13}", "showCorrectAnswer": true, "showFractionHint": true, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": false, "mustBeReducedPC": 0, "extendBaseMarkingAlgorithm": true, "unitTests": [], "notationStyles": ["plain", "en", "si-en"], "minValue": "{cof13}", "variableReplacements": [], "type": "numberentry"}, {"correctAnswerFraction": false, "useCustomName": false, "adaptiveMarkingPenalty": 0, "mustBeReduced": false, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "scripts": {}, "marks": "0.2", "maxValue": "{cof21}", "showCorrectAnswer": true, "showFractionHint": true, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": false, "mustBeReducedPC": 0, "extendBaseMarkingAlgorithm": true, "unitTests": [], "notationStyles": ["plain", "en", "si-en"], "minValue": "{cof21}", "variableReplacements": [], "type": "numberentry"}, {"correctAnswerFraction": false, "useCustomName": false, "adaptiveMarkingPenalty": 0, "mustBeReduced": false, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "scripts": {}, "marks": "0.2", "maxValue": "{cof22}", "showCorrectAnswer": true, "showFractionHint": true, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": false, "mustBeReducedPC": 0, "extendBaseMarkingAlgorithm": true, "unitTests": [], "notationStyles": ["plain", "en", "si-en"], "minValue": "{cof22}", "variableReplacements": [], "type": "numberentry"}, {"correctAnswerFraction": false, "useCustomName": false, "adaptiveMarkingPenalty": 0, "mustBeReduced": false, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "scripts": {}, "marks": "0.2", "maxValue": "{cof23}", "showCorrectAnswer": true, "showFractionHint": true, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": false, "mustBeReducedPC": 0, "extendBaseMarkingAlgorithm": true, "unitTests": [], "notationStyles": ["plain", "en", "si-en"], "minValue": "{cof23}", "variableReplacements": [], "type": "numberentry"}, {"correctAnswerFraction": false, "useCustomName": false, "adaptiveMarkingPenalty": 0, "mustBeReduced": false, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "scripts": {}, "marks": "0.2", "maxValue": "{cof31}", "showCorrectAnswer": true, "showFractionHint": true, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": false, "mustBeReducedPC": 0, "extendBaseMarkingAlgorithm": true, "unitTests": [], "notationStyles": ["plain", "en", "si-en"], "minValue": "{cof31}", "variableReplacements": [], "type": "numberentry"}, {"correctAnswerFraction": false, "useCustomName": false, "adaptiveMarkingPenalty": 0, "mustBeReduced": false, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "scripts": {}, "marks": "0.2", "maxValue": "{cof32}", "showCorrectAnswer": true, "showFractionHint": true, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": false, "mustBeReducedPC": 0, "extendBaseMarkingAlgorithm": true, "unitTests": [], "notationStyles": ["plain", "en", "si-en"], "minValue": "{cof32}", "variableReplacements": [], "type": "numberentry"}, {"correctAnswerFraction": false, "useCustomName": false, "adaptiveMarkingPenalty": 0, "mustBeReduced": false, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "scripts": {}, "marks": "0.2", "maxValue": "{cof33}", "showCorrectAnswer": true, "showFractionHint": true, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": false, "mustBeReducedPC": 0, "extendBaseMarkingAlgorithm": true, "unitTests": [], "notationStyles": ["plain", "en", "si-en"], "minValue": "{cof33}", "variableReplacements": [], "type": "numberentry"}], "customMarkingAlgorithm": "", "variableReplacements": [], "type": "gapfill"}, {"prompt": "What is the determinant of A=$\\var{matrixA}$?
\n[[0]]
", "marks": 0, "unitTests": [], "sortAnswers": false, "showCorrectAnswer": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "customName": "", "adaptiveMarkingPenalty": 0, "extendBaseMarkingAlgorithm": true, "useCustomName": false, "showFeedbackIcon": true, "gaps": [{"correctAnswerFraction": false, "useCustomName": false, "adaptiveMarkingPenalty": 0, "mustBeReduced": false, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "scripts": {}, "marks": "1", "maxValue": "det(matrixA)", "showCorrectAnswer": true, "showFractionHint": true, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": false, "mustBeReducedPC": 0, "extendBaseMarkingAlgorithm": true, "unitTests": [], "notationStyles": ["plain", "en", "si-en"], "minValue": "det(matrixA)", "variableReplacements": [], "type": "numberentry"}], "customMarkingAlgorithm": "", "variableReplacements": [], "type": "gapfill"}, {"prompt": "\nWhat is the inverse of A=$\\var{matrixA}$? Cofactors will be accepted as fractions or correct to 2 decimal places.
\n[[0]]
", "marks": 0, "unitTests": [], "sortAnswers": false, "showCorrectAnswer": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "customName": "", "adaptiveMarkingPenalty": 0, "extendBaseMarkingAlgorithm": true, "useCustomName": false, "showFeedbackIcon": true, "gaps": [{"tolerance": "0.005", "allowResize": true, "marks": 1, "markPerCell": false, "numRows": "3", "unitTests": [], "showCorrectAnswer": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "customName": "", "numColumns": "3", "adaptiveMarkingPenalty": 0, "allowFractions": true, "extendBaseMarkingAlgorithm": true, "useCustomName": false, "correctAnswerFractions": false, "showFeedbackIcon": true, "correctAnswer": "inverseA", "customMarkingAlgorithm": "", "variableReplacements": [], "type": "matrix"}], "customMarkingAlgorithm": "", "variableReplacements": [], "type": "gapfill"}], "name": "Matt's copy of Ex 6 Cofactors, Determinant and Inverse of a 3x3 matrix", "statement": "", "rulesets": {}, "functions": {}, "ungrouped_variables": ["matrixA", "a11", "a12", "a21", "a22", "a13", "a23", "a31", "a32", "a33", "inverseA"], "variablesTest": {"maxRuns": 100, "condition": ""}, "tags": [], "type": "question", "contributors": [{"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}, {"name": "Matt Tranter", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3509/"}]}]}], "contributors": [{"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}, {"name": "Matt Tranter", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3509/"}]}