// Numbas version: exam_results_page_options {"name": "CLE 3 True False", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "metadata": {"description": "Multi choice question week 3", "licence": "Creative Commons Attribution 4.0 International"}, "tags": [], "variable_groups": [{"name": "change these", "variables": ["statements_true", "statements_false", "max_mark", "error", "a", "b", "c"]}, {"name": "do not change these", "variables": ["n", "rand", "statements", "marks"]}], "extensions": [], "advice": "

See the lecture notes for relevant background and examples

", "preamble": {"css": "", "js": ""}, "name": "CLE 3 True False", "statement": "", "ungrouped_variables": [], "parts": [{"type": "m_n_x", "warningType": "none", "showCorrectAnswer": true, "useCustomName": false, "showFeedbackIcon": true, "displayType": "radiogroup", "prompt": "

Which of the following are true and which are false?

\n

\n

If you are unsure of something, find out the answer instead of guessing. A single error will result in a score 0 for this question. If you are unable to find out, you are welcome to ask me for help or advice.

", "adaptiveMarkingPenalty": 0, "shuffleChoices": true, "unitTests": [], "layout": {"type": "all", "expression": ""}, "scripts": {}, "maxAnswers": 0, "variableReplacementStrategy": "originalfirst", "matrix": "{marks}", "marks": 0, "customName": "", "customMarkingAlgorithm": "", "choices": "{statements}", "extendBaseMarkingAlgorithm": true, "showCellAnswerState": true, "minAnswers": "{n}", "variableReplacements": [], "minMarks": 0, "answers": ["

True

", "

False

"], "shuffleAnswers": false, "maxMarks": "0"}], "variables": {"statements_true": {"name": "statements_true", "description": "", "definition": "[\"$-\\\\var{c}^2$ equals $-\\\\var{c^2}$\",\n \"$\\\\sqrt{\\\\var{(c-1)^2}}$ equals $\\\\var{c-1}$, not $-\\\\var{c-1}$\",\n \"If $0<\\\\theta<45^{\\\\circ}$, then the length of the opposite is smaller than the length of the adjacent.\",\n \"Completing the square means re-writing a quadratic into the form $A(x+B)^2+C$.\",\n \"$\\\\sin(b+c) \\\\neq \\\\sin(b) + \\\\sin(c)$\",\n \"$5(b+c) = 5b+5c$\",\n \"$\\\\sin(\\\\theta)$ can never be bigger than $1$\",\n \"$\\\\frac{a}{b+c} \\\\neq \\\\frac{a}{b} + \\\\frac{a}{c}$\",\n \"$\\\\frac{b+c}{a} = \\\\frac{b}{a} + \\\\frac{c}{a}$\"\n]\n ", "templateType": "anything", "group": "change these"}, "statements_false": {"name": "statements_false", "description": "", "definition": "[\"$-\\\\var{c}^2$ equals $\\\\var{c^2}$\",\n \"$\\\\sqrt{\\\\var{(c-1)^2}}$ equals $\\\\var{c-1}$ or $-\\\\var{c-1}$\",\n \"If $0<\\\\theta<45^{\\\\circ}$, then the length of the adjacent is smaller than the length of the opposite.\",\n \"Completing the square is the same as factorising.\",\n \"$\\\\sin(b+c) = \\\\sin(b) + \\\\sin(c)$\",\n \"$5(b+c) = 5b+c$\",\n \"$\\\\sin(\\\\theta)$ can be bigger than $1$\",\n \"$\\\\frac{a}{b+c} =\\\\frac{a}{b} + \\\\frac{a}{c}$\",\n \"$\\\\frac{b}{a} + \\\\frac{c}{a} = \\\\frac{b+c}{a+a}$\"\n]\n ", "templateType": "anything", "group": "change these"}, "rand": {"name": "rand", "description": "", "definition": "repeat(if(random(0..2)=2,1,0),n)", "templateType": "anything", "group": "do not change these"}, "error": {"name": "error", "description": "

what proportion of total marks should be lost for each error. e.g. 1/2 would mean a single error costs half of all marks available. 1/3 would mean each error costs a third of all marks.

", "definition": "1", "templateType": "anything", "group": "change these"}, "statements": {"name": "statements", "description": "", "definition": "map(if(rand[j]=1,\n statements_true[j],\n statements_false[j]),j,0..n-1)", "templateType": "anything", "group": "do not change these"}, "c": {"name": "c", "description": "", "definition": "random(6..9)", "templateType": "anything", "group": "change these"}, "b": {"name": "b", "description": "", "definition": "random(10..18)+random(1..9)/10", "templateType": "anything", "group": "change these"}, "max_mark": {"name": "max_mark", "description": "", "definition": "6", "templateType": "anything", "group": "change these"}, "a": {"name": "a", "description": "", "definition": "random(3..7)", "templateType": "anything", "group": "change these"}, "marks": {"name": "marks", "description": "", "definition": "matrix(map(if(rand[j]=1,[max_mark/n,-max_mark*error+max_mark/n],[-max_mark*error+max_mark/n,max_mark/n]),j,0..n-1))\n\n", "templateType": "anything", "group": "do not change these"}, "n": {"name": "n", "description": "", "definition": "length(statements_true)", "templateType": "anything", "group": "do not change these"}}, "rulesets": {}, "variablesTest": {"maxRuns": 100, "condition": ""}, "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}]}], "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}