// Numbas version: finer_feedback_settings {"name": "Roz's copy of Solve a pair of simultaneous equations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"variableReplacements": [], "adaptiveMarkingPenalty": 0, "showCorrectAnswer": true, "customName": "", "useCustomName": false, "variableReplacementStrategy": "originalfirst", "gaps": [{"variableReplacements": [], "scripts": {}, "useCustomName": false, "variableReplacementStrategy": "originalfirst", "valuegenerators": [], "checkVariableNames": false, "extendBaseMarkingAlgorithm": true, "type": "jme", "notallowed": {"partialCredit": 0, "message": "
Input as a fraction or an integer not as a decimal
", "strings": ["."], "showStrings": false}, "answer": "{c*b1-b*c1}/{b1*a-a1*b}", "customMarkingAlgorithm": "", "marks": 2, "adaptiveMarkingPenalty": 0, "answerSimplification": "std", "showCorrectAnswer": true, "unitTests": [], "customName": "", "vsetRange": [0, 1], "failureRate": 1, "showFeedbackIcon": true, "checkingAccuracy": 0.001, "showPreview": true, "vsetRangePoints": 5, "checkingType": "absdiff"}, {"variableReplacements": [], "scripts": {}, "useCustomName": false, "variableReplacementStrategy": "originalfirst", "valuegenerators": [], "checkVariableNames": false, "extendBaseMarkingAlgorithm": true, "type": "jme", "notallowed": {"partialCredit": 0, "message": "Input as a fraction or an integer not as a decimal
", "strings": ["."], "showStrings": false}, "answer": "{c*a1-a*c1}/{b*a1-a*b1}", "customMarkingAlgorithm": "", "marks": 2, "adaptiveMarkingPenalty": 0, "answerSimplification": "std", "showCorrectAnswer": true, "unitTests": [], "customName": "", "vsetRange": [0, 1], "failureRate": 1, "showFeedbackIcon": true, "checkingAccuracy": 0.001, "showPreview": true, "vsetRangePoints": 5, "checkingType": "absdiff"}], "unitTests": [], "stepsPenalty": 0, "customMarkingAlgorithm": "", "type": "gapfill", "showFeedbackIcon": true, "prompt": "\n\t\t\t\\[ \\begin{eqnarray} \\simplify[std]{{a}x+{b}y}&=&\\var{c}\\\\ \\simplify[std]{{a1}x+{b1}y}&=&\\var{c1} \\end{eqnarray} \\]
\n\t\t\t$x=\\phantom{{}}$[[0]], $y=\\phantom{{}}$[[1]]
\n\t\t\tInput your answers as fractions or integers, not as decimals.
\n\t\t\tSee \"Show steps\" for a video that describes a more direct method of solving when, for example, one of the equations gives a variable directly in terms of the other variable.
\n\t\t\t \n\t\t\t", "marks": 0, "extendBaseMarkingAlgorithm": true, "scripts": {}, "sortAnswers": false, "steps": [{"variableReplacements": [], "adaptiveMarkingPenalty": 0, "showCorrectAnswer": true, "customName": "", "useCustomName": false, "variableReplacementStrategy": "originalfirst", "unitTests": [], "customMarkingAlgorithm": "", "type": "information", "showFeedbackIcon": true, "prompt": "", "marks": 0, "extendBaseMarkingAlgorithm": true, "scripts": {}}]}], "ungrouped_variables": ["a", "c", "b", "that", "this", "sc1", "s1", "s6", "a1", "aort", "a2", "b1", "b2", "sc", "sb", "sa", "fromorto", "c1"], "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "metadata": {"description": "Solve for $x$ and $y$: \\[ \\begin{eqnarray} a_1x+b_1y&=&c_1\\\\ a_2x+b_2y&=&c_2 \\end{eqnarray} \\]
\nThe included video describes a more direct method of solving when, for example, one of the equations gives a variable directly in terms of the other variable.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Solve the following simultaneous equations for $x$ and $y$. Input your answers as fractions or integers, not as decimals.
\n\n\n\n\n", "advice": "\n\t\\[ \\begin{eqnarray} \\simplify[std]{{a}x+{b}y}&=&\\var{c}&\\mbox{ ........(1)}\\\\ \\simplify[std]{{a1}x+{b1}y}&=&\\var{c1}&\\mbox{ ........(2)} \\end{eqnarray} \\]
To get a solution for $x$ multiply equation (1) by {this} and equation (2) by {that}
This gives:
\\[ \\begin{eqnarray} \\simplify[std]{{a*this}x+{b*this}y}&=&\\var{this*c}&\\mbox{ ........(3)}\\\\ \\simplify[std]{{a1*that}x+{b1*that}y}&=&\\var{that*c1}&\\mbox{ ........(4)} \\end{eqnarray} \\]
Now {aort} (4) {fromorto} equation (3) to get
\\[\\simplify[std]{({a*this}+{s6*a1*that})x={this*c}+{s6*that*c1}}\\]
And so we get the solution for $x$:
\\[x = \\simplify{{c*b1-b*c1}/{b1*a-a1*b}}\\]
Substituting this value into any of the equations (1) and (2) gives:
\\[y = \\simplify{{c*a1-a*c1}/{b*a1-a*b1}}\\]
You can check that these solutions are correct by seeing if they satisfy both equations (1) and (2) by substituting these values into the equations.