// Numbas version: finer_feedback_settings {"name": "Roz's copy of Solve a pair of simultaneous equations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"variableReplacements": [], "adaptiveMarkingPenalty": 0, "showCorrectAnswer": true, "customName": "", "useCustomName": false, "variableReplacementStrategy": "originalfirst", "gaps": [{"variableReplacements": [], "scripts": {}, "useCustomName": false, "variableReplacementStrategy": "originalfirst", "valuegenerators": [], "checkVariableNames": false, "extendBaseMarkingAlgorithm": true, "type": "jme", "notallowed": {"partialCredit": 0, "message": "

Input as a fraction or an integer not as a decimal

", "strings": ["."], "showStrings": false}, "answer": "{c*b1-b*c1}/{b1*a-a1*b}", "customMarkingAlgorithm": "", "marks": 2, "adaptiveMarkingPenalty": 0, "answerSimplification": "std", "showCorrectAnswer": true, "unitTests": [], "customName": "", "vsetRange": [0, 1], "failureRate": 1, "showFeedbackIcon": true, "checkingAccuracy": 0.001, "showPreview": true, "vsetRangePoints": 5, "checkingType": "absdiff"}, {"variableReplacements": [], "scripts": {}, "useCustomName": false, "variableReplacementStrategy": "originalfirst", "valuegenerators": [], "checkVariableNames": false, "extendBaseMarkingAlgorithm": true, "type": "jme", "notallowed": {"partialCredit": 0, "message": "

Input as a fraction or an integer not as a decimal

", "strings": ["."], "showStrings": false}, "answer": "{c*a1-a*c1}/{b*a1-a*b1}", "customMarkingAlgorithm": "", "marks": 2, "adaptiveMarkingPenalty": 0, "answerSimplification": "std", "showCorrectAnswer": true, "unitTests": [], "customName": "", "vsetRange": [0, 1], "failureRate": 1, "showFeedbackIcon": true, "checkingAccuracy": 0.001, "showPreview": true, "vsetRangePoints": 5, "checkingType": "absdiff"}], "unitTests": [], "stepsPenalty": 0, "customMarkingAlgorithm": "", "type": "gapfill", "showFeedbackIcon": true, "prompt": "\n\t\t\t

\\[ \\begin{eqnarray} \\simplify[std]{{a}x+{b}y}&=&\\var{c}\\\\ \\simplify[std]{{a1}x+{b1}y}&=&\\var{c1} \\end{eqnarray} \\]

\n\t\t\t

$x=\\phantom{{}}$[[0]], $y=\\phantom{{}}$[[1]]

\n\t\t\t

Input your answers as fractions or integers, not as decimals.

\n\t\t\t

See \"Show steps\" for a video that describes a more direct method of solving when, for example, one of the equations gives a variable directly in terms of the other variable.

\n\t\t\t \n\t\t\t", "marks": 0, "extendBaseMarkingAlgorithm": true, "scripts": {}, "sortAnswers": false, "steps": [{"variableReplacements": [], "adaptiveMarkingPenalty": 0, "showCorrectAnswer": true, "customName": "", "useCustomName": false, "variableReplacementStrategy": "originalfirst", "unitTests": [], "customMarkingAlgorithm": "", "type": "information", "showFeedbackIcon": true, "prompt": "

", "marks": 0, "extendBaseMarkingAlgorithm": true, "scripts": {}}]}], "ungrouped_variables": ["a", "c", "b", "that", "this", "sc1", "s1", "s6", "a1", "aort", "a2", "b1", "b2", "sc", "sb", "sa", "fromorto", "c1"], "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "metadata": {"description": "

Solve for $x$ and $y$:  \\[ \\begin{eqnarray} a_1x+b_1y&=&c_1\\\\   a_2x+b_2y&=&c_2 \\end{eqnarray} \\]

\n

The included video describes a more direct method of solving when, for example, one of the equations gives a variable directly in terms of the other variable.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Solve the following simultaneous equations for $x$ and $y$. Input your answers as fractions or integers, not as decimals.

\n\n\n\n\n", "advice": "\n\t

\\[ \\begin{eqnarray} \\simplify[std]{{a}x+{b}y}&=&\\var{c}&\\mbox{ ........(1)}\\\\ \\simplify[std]{{a1}x+{b1}y}&=&\\var{c1}&\\mbox{ ........(2)} \\end{eqnarray} \\]
To get a solution for $x$ multiply equation (1) by {this} and equation (2) by {that}

\n\t

This gives:
\\[ \\begin{eqnarray} \\simplify[std]{{a*this}x+{b*this}y}&=&\\var{this*c}&\\mbox{ ........(3)}\\\\ \\simplify[std]{{a1*that}x+{b1*that}y}&=&\\var{that*c1}&\\mbox{ ........(4)} \\end{eqnarray} \\]
Now {aort} (4) {fromorto} equation (3) to get
\\[\\simplify[std]{({a*this}+{s6*a1*that})x={this*c}+{s6*that*c1}}\\]
And so we get the solution for $x$:
\\[x = \\simplify{{c*b1-b*c1}/{b1*a-a1*b}}\\]
Substituting this value into any of the equations (1) and (2) gives:
\\[y = \\simplify{{c*a1-a*c1}/{b*a1-a*b1}}\\]
You can check that these solutions are correct by seeing if they satisfy both equations (1) and (2) by substituting these values into the equations.

\n\t \n\t \n\t \n\t \n\t \n\t \n\t", "preamble": {"js": "", "css": ""}, "tags": [], "name": "Roz's copy of Solve a pair of simultaneous equations", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "extensions": [], "variables": {"c1": {"templateType": "anything", "definition": "sc1*random(1..9)", "description": "", "name": "c1", "group": "Ungrouped variables"}, "s6": {"templateType": "anything", "definition": "if(b*b1>0,-1,1)", "description": "", "name": "s6", "group": "Ungrouped variables"}, "b1": {"templateType": "anything", "definition": "if(a*b2=a1*b,b2+1,b2)", "description": "", "name": "b1", "group": "Ungrouped variables"}, "that": {"templateType": "anything", "definition": "lcm(abs(b),abs(b1))/abs(b1)", "description": "", "name": "that", "group": "Ungrouped variables"}, "b": {"templateType": "anything", "definition": "sb*random(1..9)", "description": "", "name": "b", "group": "Ungrouped variables"}, "s1": {"templateType": "anything", "definition": "random(1,-1)", "description": "", "name": "s1", "group": "Ungrouped variables"}, "sb": {"templateType": "anything", "definition": "random(1,-1)", "description": "", "name": "sb", "group": "Ungrouped variables"}, "a1": {"templateType": "anything", "definition": "switch(a2=2,random(3,5,7,9),a2=3,random(2,4,5,7),a2=4,random(3,5,7,9),a2=5,random(3,4,6,7,9),a2=6,random(4,5,7,8,9),a2=7,random(3,4,5,6,8,9),a2=8,random(3,5,6,7,9),a2=9,random(2,4,5,7,8),9)", "description": "", "name": "a1", "group": "Ungrouped variables"}, "fromorto": {"templateType": "anything", "definition": "if(b*b1>0,'from','to')", "description": "", "name": "fromorto", "group": "Ungrouped variables"}, "b2": {"templateType": "anything", "definition": "random(2..9)", "description": "", "name": "b2", "group": "Ungrouped variables"}, "a": {"templateType": "anything", "definition": "sa*random(2..9)", "description": "", "name": "a", "group": "Ungrouped variables"}, "a2": {"templateType": "anything", "definition": "abs(a)", "description": "", "name": "a2", "group": "Ungrouped variables"}, "sc1": {"templateType": "anything", "definition": "random(1,-1)", "description": "", "name": "sc1", "group": "Ungrouped variables"}, "sc": {"templateType": "anything", "definition": "random(1,-1)", "description": "", "name": "sc", "group": "Ungrouped variables"}, "sa": {"templateType": "anything", "definition": "random(1,-1)", "description": "", "name": "sa", "group": "Ungrouped variables"}, "c": {"templateType": "anything", "definition": "sc*random(1..9)", "description": "", "name": "c", "group": "Ungrouped variables"}, "this": {"templateType": "anything", "definition": "lcm(abs(b),abs(b1))/abs(b)", "description": "", "name": "this", "group": "Ungrouped variables"}, "aort": {"templateType": "anything", "definition": "if(b*b1>0,'take away the equation','add the equation')", "description": "", "name": "aort", "group": "Ungrouped variables"}}, "functions": {}, "type": "question", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Roz Wyatt-Millington", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3732/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Roz Wyatt-Millington", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3732/"}]}