// Numbas version: finer_feedback_settings {"name": "W1b - Cofactors, Determinant and Inverse of a 3x3 matrix", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"tags": [], "ungrouped_variables": ["matrixA", "a11", "a12", "a21", "a22", "a13", "a23", "a31", "a32", "a33", "inverseA", "detA"], "parts": [{"useCustomName": false, "showCorrectAnswer": true, "marks": 0, "extendBaseMarkingAlgorithm": true, "type": "gapfill", "gaps": [{"unitTests": [], "maxValue": "{cof11}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": true, "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "useCustomName": false, "showCorrectAnswer": true, "marks": "1", "correctAnswerFraction": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "mustBeReduced": false, "scripts": {}, "variableReplacements": [], "minValue": "{cof11}", "correctAnswerStyle": "plain"}, {"unitTests": [], "maxValue": "{cof12}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": false, "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "useCustomName": false, "showCorrectAnswer": true, "marks": "1", "correctAnswerFraction": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "mustBeReduced": false, "scripts": {}, "variableReplacements": [], "minValue": "{cof12}", "correctAnswerStyle": "plain"}, {"unitTests": [], "maxValue": "{cof13}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": false, "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "useCustomName": false, "showCorrectAnswer": true, "marks": "1", "correctAnswerFraction": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "mustBeReduced": false, "scripts": {}, "variableReplacements": [], "minValue": "{cof13}", "correctAnswerStyle": "plain"}, {"unitTests": [], "maxValue": "{cof21}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": false, "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "useCustomName": false, "showCorrectAnswer": true, "marks": "1", "correctAnswerFraction": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "mustBeReduced": false, "scripts": {}, "variableReplacements": [], "minValue": "{cof21}", "correctAnswerStyle": "plain"}, {"unitTests": [], "maxValue": "{cof22}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": false, "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "useCustomName": false, "showCorrectAnswer": true, "marks": "1", "correctAnswerFraction": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "mustBeReduced": false, "scripts": {}, "variableReplacements": [], "minValue": "{cof22}", "correctAnswerStyle": "plain"}, {"unitTests": [], "maxValue": "{cof23}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": false, "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "useCustomName": false, "showCorrectAnswer": true, "marks": "1", "correctAnswerFraction": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "mustBeReduced": false, "scripts": {}, "variableReplacements": [], "minValue": "{cof23}", "correctAnswerStyle": "plain"}, {"unitTests": [], "maxValue": "{cof31}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": false, "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "useCustomName": false, "showCorrectAnswer": true, "marks": "1", "correctAnswerFraction": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "mustBeReduced": false, "scripts": {}, "variableReplacements": [], "minValue": "{cof31}", "correctAnswerStyle": "plain"}, {"unitTests": [], "maxValue": "{cof32}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": false, "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "useCustomName": false, "showCorrectAnswer": true, "marks": "1", "correctAnswerFraction": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "mustBeReduced": false, "scripts": {}, "variableReplacements": [], "minValue": "{cof32}", "correctAnswerStyle": "plain"}, {"unitTests": [], "maxValue": "{cof33}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "customName": "", "allowFractions": false, "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "useCustomName": false, "showCorrectAnswer": true, "marks": "1", "correctAnswerFraction": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "mustBeReduced": false, "scripts": {}, "variableReplacements": [], "minValue": "{cof33}", "correctAnswerStyle": "plain"}], "variableReplacementStrategy": "originalfirst", "sortAnswers": false, "unitTests": [], "customName": "", "prompt": "
\nCalculate the nine cofactors of $A=\\var{matrixA}$?
\n$A _{11}$ cofactor in position 1,1 is [[0]]
\n$A_{12}$ cofactor in position 1,2 is [[1]]
\n$A_{13}$ cofactor in position 1,3 is [[2]]
\n$A_{21}$ cofactor in position 2,1 is [[3]]
\n$A_{22}$ cofactor in position 2,2 is [[4]]
\n$A_{23}$ cofactor in position 2,3 is [[5]]
\n$A_{31}$ cofactor in position 3,1 is [[6]]
\n$A_{32}$ cofactor in position 3,2 is [[7]]
\n$A_{33}$ cofactor in position 3,3 is [[8]]
", "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "variableReplacements": [], "customMarkingAlgorithm": "", "scripts": {}}, {"useCustomName": false, "showCorrectAnswer": true, "marks": 0, "extendBaseMarkingAlgorithm": true, "type": "gapfill", "gaps": [{"unitTests": [], "maxValue": "det(matrixA)", "showFractionHint": true, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "customName": "det a", "allowFractions": false, "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "useCustomName": true, "showCorrectAnswer": true, "marks": "1", "correctAnswerFraction": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "mustBeReduced": false, "scripts": {}, "variableReplacements": [], "minValue": "det(matrixA)", "correctAnswerStyle": "plain"}], "variableReplacementStrategy": "originalfirst", "sortAnswers": false, "unitTests": [], "customName": "", "prompt": "What is the determinant of $A=\\var{matrixA}$?
\n$|A| = $[[0]]
", "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "variableReplacements": [], "customMarkingAlgorithm": "", "scripts": {}}, {"useCustomName": false, "showCorrectAnswer": true, "marks": 0, "extendBaseMarkingAlgorithm": true, "type": "gapfill", "gaps": [{"unitTests": [], "scripts": {}, "numColumns": "3", "type": "matrix", "variableReplacementStrategy": "originalfirst", "tolerance": "0.005", "precisionType": "dp", "numRows": "3", "customName": "inv a", "allowFractions": false, "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "extendBaseMarkingAlgorithm": true, "useCustomName": true, "showCorrectAnswer": true, "marks": "9", "markPerCell": true, "precision": "2", "correctAnswer": "matrix([cof11,cof21,cof31],[cof12,cof22,cof32],[cof13,cof23,cof33])/det(matrixA)", "correctAnswerFractions": false, "variableReplacements": [{"variable": "cof11", "must_go_first": true, "part": "p0g0"}, {"variable": "cof12", "must_go_first": true, "part": "p0g1"}, {"variable": "cof13", "must_go_first": true, "part": "p0g2"}, {"variable": "cof21", "must_go_first": true, "part": "p0g3"}, {"variable": "cof22", "must_go_first": true, "part": "p0g4"}, {"variable": "cof23", "must_go_first": true, "part": "p0g5"}, {"variable": "cof31", "must_go_first": true, "part": "p0g6"}, {"variable": "cof32", "must_go_first": true, "part": "p0g7"}, {"variable": "cof33", "must_go_first": true, "part": "p0g8"}, {"variable": "detA", "must_go_first": true, "part": "p1g0"}], "strictPrecision": true, "allowResize": false}], "variableReplacementStrategy": "originalfirst", "sortAnswers": false, "unitTests": [], "customName": "", "prompt": "What is the inverse of $A=\\var{matrixA}$? Cofactors will be accepted as fractions or correct to 2 decimal places.
\n$A^{-1}=$[[0]]
", "showFeedbackIcon": true, "adaptiveMarkingPenalty": 0, "variableReplacements": [], "customMarkingAlgorithm": "", "scripts": {}}], "functions": {}, "name": "W1b - Cofactors, Determinant and Inverse of a 3x3 matrix", "extensions": [], "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "", "preamble": {"css": "", "js": ""}, "rulesets": {}, "variable_groups": [{"variables": ["cof11", "cof12", "cof13", "cof21", "cof22", "cof23", "cof31", "cof32", "cof33"], "name": "cofactors"}, {"variables": [], "name": "Unnamed group"}], "advice": "If \\[ A=\\left( \\begin{array}{ccc}
a & b & c \\\\d & e&f\\\\ g&h&j \\end{array} \\right),\\]
Cofactors are given by \\[ A=\\left( \\begin{array}{ccc}
a & b & c \\\\d & e&f\\\\ g&h&j \\end{array} \\right),\\]
Cof11 =\\[ +\\left| \\begin{array}{ccc}
e&f\\\\ h&j \\end{array} \\right|,\\]
Cof12 =\\[ -\\left| \\begin{array}{ccc}
d & f\\\\ g&j \\end{array} \\right|,\\]
Cof13 =\\[ +\\left| \\begin{array}{ccc}
d & e\\ g&h\\end{array} \\right|,\\]
Cof21 =\\[ -\\left| \\begin{array}{ccc}
b & c \\\\h&j \\end{array} \\right|,\\]
Cof22 =\\[ +\\left| \\begin{array}{ccc}
a & c \\\\ g&j \\end{array} \\right|,\\]
Cof23 =\\[ -\\left| \\begin{array}{ccc}
a & b \\\\g&h\\end{array} \\right|,\\]
Cof31 =\\[ +=\\left| \\begin{array}{ccc}
b & c \\\\e&f\\end{array} \\right|,\\]
Cof32 =\\[ -\\left| \\begin{array}{ccc}
a & c \\\\d & f\\end{array} \\right|,\\]
Cof33 =\\[ +\\left| \\begin{array}{ccc}
a & b\\\\d & e \\end{array} \\right|,\\]
Then, the determinant of A is given by the sum of the product of any row ( or column) elements by their cofactors
\ne.g row 1 determinant = a*cof11+b*cof12+c*cof13
\nand the inverse of A is given by the ratio of the adjoint(A) and the deteminant of A
\nwhere adjoint \\[A= \\left( \\begin{array}{ccc}
cof11 & cof21 & cof31 \\\\cof12 & cof22&cof32\\\\ cof13&cof23&cof33 \\end{array} \\right),\\]
inverse of \\[A= \\frac{1}{det(A)}*\\left( \\begin{array}{ccc}
cof11 & cof21 & cof31 \\\\cof12 & cof22&cof32\\\\ cof13&cof23&cof33 \\end{array} \\right),\\]
\n", "variables": {"inverseA": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "matrix([cof11,cof21,cof31],[cof12,cof22,cof32],[cof13,cof23,cof33])/detA", "name": "inverseA"}, "cof22": {"templateType": "anything", "description": "", "group": "cofactors", "definition": "a11*a33-a31*a13", "name": "cof22"}, "a12": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..10)", "name": "a12"}, "cof11": {"templateType": "anything", "description": "", "group": "cofactors", "definition": "a22*a33-a32*a23", "name": "cof11"}, "a32": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..10)", "name": "a32"}, "cof23": {"templateType": "anything", "description": "
cof23
", "group": "cofactors", "definition": "a12*a31-a11*a32", "name": "cof23"}, "a22": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..5 except(a21*a12/a11))", "name": "a22"}, "cof32": {"templateType": "anything", "description": "", "group": "cofactors", "definition": "a13*a21-a11*a23", "name": "cof32"}, "a21": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..10)", "name": "a21"}, "cof13": {"templateType": "anything", "description": "", "group": "cofactors", "definition": "a21*a32-a31*a22", "name": "cof13"}, "matrixA": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "matrix([a11,a12,a13],[a21,a22,a23],[a31,a32,a33])", "name": "matrixA"}, "a31": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..10)", "name": "a31"}, "cof21": {"templateType": "anything", "description": "", "group": "cofactors", "definition": "a32*a13-a12*a33", "name": "cof21"}, "a13": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(-5..10)", "name": "a13"}, "cof12": {"templateType": "anything", "description": "", "group": "cofactors", "definition": "a23*a31-a21*a33", "name": "cof12"}, "cof33": {"templateType": "anything", "description": "", "group": "cofactors", "definition": "a11*a22-a12*a21", "name": "cof33"}, "cof31": {"templateType": "anything", "description": "", "group": "cofactors", "definition": "a12*a23-a22*a13", "name": "cof31"}, "detA": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "a11*cof11+a12*cof12+a13*cof13", "name": "detA"}, "a23": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(-4..4)", "name": "a23"}, "a33": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..20)", "name": "a33"}, "a11": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(-3..3)", "name": "a11"}}, "metadata": {"description": "Cofactors Determinant and inverse of a 3x3 matrix.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "contributors": [{"name": "Clodagh Carroll", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/384/"}, {"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}, {"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}, {"name": "Timur Zaripov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3272/"}]}]}], "contributors": [{"name": "Clodagh Carroll", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/384/"}, {"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}, {"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}, {"name": "Timur Zaripov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3272/"}]}