// Numbas version: finer_feedback_settings {"name": "Raaklijnbenadering", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Raaklijnbenadering", "tags": [], "metadata": {"description": "Test rond vergelijking van raaklijn en gebruik voor numerieke benadering.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Voor alle onderdelen uitgezonderd b), moet je getallen in breukvorm ingeven.

", "advice": "

a) De afgeleide van de functie met voorschrift \\[ f(x) = \\sqrt[\\var{n}]{x}  = x^{\\frac{1} {\\var{n}}} \\] wordt gegeven door
\\[ f'(x) = \\frac{\\mathrm{d}}{\\mathrm{d}x}(x^{\\frac{1} {\\var{n}}}) = {\\frac{1} {\\var{n}}} \\cdot x^{\\frac{\\var{1-n}} {\\var{n}}}  .\\]

\n

De raaklijn aan de grafiek van \\( f \\) in \\( ( a, f(a)) \\) heeft als vergelijking
\\[ y - f(a) = f'(a) \\cdot (x-a) \\]

\n

Voor \\( a = \\var{a} \\) geeft dit
\\[ y - \\var{m} = \\frac{1} {\\var{ricoN}} \\cdot \\left( x-\\var{a} \\right) \\]
of nog
\\[ y = \\var{m} + \\frac{1} {\\var{ricoN}} \\cdot \\left( x-\\var{a} \\right)  = \\frac{1} {\\var{ricoN}} \\cdot x +  \\frac {\\var{m*(n-1)}} {\\var{n}}\\]

\n

\n

b) De raaklijnbenadering van \\( f(a+\\var{eps}) \\) wordt gegeven door
\\[ f(a) + f'(a) \\cdot \\var{eps} \\]
wat voor \\( a = \\var{a} \\)  leidt tot
\\[ \\var{rklben} \\]
en afgerond moet worden  op  \\( \\var{p+3} \\) decimalen.

", "rulesets": {}, "extensions": [], "variables": {"rklbenadering": {"name": "rklbenadering", "group": "Ungrouped variables", "definition": "m+eps/(n*m^(n-1))", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "m^n", "description": "

getal a

", "templateType": "anything"}, "rklcN": {"name": "rklcN", "group": "Ungrouped variables", "definition": "n", "description": "

cst rklvgl noemer

", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "

exponent in a = m^n

", "templateType": "anything"}, "eps": {"name": "eps", "group": "Ungrouped variables", "definition": "10^(-p)", "description": "

eps

", "templateType": "anything"}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "

grondtal in a = m^n

", "templateType": "anything"}, "rklben": {"name": "rklben", "group": "Ungrouped variables", "definition": "dpformat(m+eps/(n*m^(n-1)),12)", "description": "

rklben

", "templateType": "anything"}, "rklcT": {"name": "rklcT", "group": "Ungrouped variables", "definition": "m*(n-1)", "description": "

teller constante rklvgl

", "templateType": "anything"}, "ricoN": {"name": "ricoN", "group": "Ungrouped variables", "definition": "(n*m^(n-1))", "description": "", "templateType": "anything"}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "

decimaal om bij a op te tellen

", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["m", "n", "a", "p", "eps", "ricoN", "rklcT", "rklcN", "rklbenadering", "rklben"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Beschouw de functie \\( f: \\mathbb{R}^+  \\to  \\mathbb{R} : x \\mapsto  \\sqrt[\\var{n}]{x}  \\, \\, . \\)

"}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Geef een vergelijking van de raaklijn aan de grafiek van \\( f \\) in \\( ( a, f(a)) \\) als \\( a = \\var{a} \\).

\n

Doe dit onder de vorm \\(  y = getal1 \\cdot x+getal2 \\). Gebruik breuken, geen decimalen.

\n

\\( y = \\) [[0]]  \\( \\cdot x+ \\)  [[1]]

\n

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "1/{ricoN}", "maxValue": "1/{ricoN}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "plain-eu"], "correctAnswerStyle": "si-en"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "rklcT/rklcN", "maxValue": "rklcT/rklcN", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "1/{ricoN}", "maxValue": "1/{ricoN}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "plain-eu"], "correctAnswerStyle": "si-en"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Geef een raaklijnbenadering van \\( f(\\var{a+eps}) \\) tot op \\( \\var{p+3} \\) decimalen:

\n

 \\( f(\\var{a+eps}) \\)  wordt benaderd door  [[0]]

\n

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "rklbenadering", "maxValue": "rklbenadering", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "p+3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "type": "question", "contributors": [{"name": "Paul Verheyen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3610/"}], "resources": []}]}], "contributors": [{"name": "Paul Verheyen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3610/"}]}