// Numbas version: finer_feedback_settings {"name": "NC PreCal Find coordinates of stationary points of polynomials", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"rulesets": {}, "preamble": {"js": "", "css": ""}, "variablesTest": {"condition": "", "maxRuns": 100}, "variable_groups": [], "tags": [], "ungrouped_variables": ["y1", "y0", "y3", "y2", "y4", "y02", "y03", "x1", "x43", "x42", "y42", "y43", "x03", "x02", "y22", "y23", "x23", "x22", "x2", "x3", "x0", "c0", "c02", "x4", "x32", "x33", "x13", "y33", "y32", "x12", "c03", "y13", "y12"], "functions": {}, "name": "NC PreCal Find coordinates of stationary points of polynomials", "advice": "", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Finding the coordinates and determining the nature of the stationary points on a polynomial function

"}, "extensions": [], "variables": {"y13": {"definition": "(x13^3)/3-(x13+x23)*x13^2/2+x13*x23*x13+c03", "templateType": "anything", "group": "Ungrouped variables", "name": "y13", "description": ""}, "y0": {"definition": "random(-10..10)", "templateType": "anything", "group": "Ungrouped variables", "name": "y0", "description": ""}, "y42": {"definition": "if(y12For the following function:

\n

\\[ \\simplify{ y = 2x^3-{3*(x1+x2)}x^2+{x1*x2*6}x+{c0} } \\]

\n

Determine the coordinates and the nature of the local extrema points.

\n

Minimum point: $\\big($ [[0]] $ , $ [[1]] $\\big)$ and maximum point: $\\big($ [[2]] $ , $ [[3]] $\\big)$

\n

Enter fractions in their simplest form.

", "variableReplacementStrategy": "originalfirst", "useCustomName": false, "type": "gapfill", "variableReplacements": [], "adaptiveMarkingPenalty": 0, "marks": 0, "scripts": {}, "showCorrectAnswer": true}, {"customName": "", "unitTests": [], "gaps": [{"showFeedbackIcon": true, "type": "jme", "showPreview": false, "variableReplacements": [], "vsetRangePoints": 5, "failureRate": 1, "customName": "", "answer": "{x32}", "showCorrectAnswer": true, "unitTests": [], "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "valuegenerators": [], "useCustomName": false, "checkingType": "absdiff", "adaptiveMarkingPenalty": 0, "answerSimplification": "all,fractionNumbers", "checkingAccuracy": 0.001, "marks": 1, "scripts": {}, "checkVariableNames": false}, {"showFeedbackIcon": true, "type": "jme", "showPreview": false, "variableReplacements": [], "vsetRangePoints": 5, "failureRate": 1, "customName": "", "answer": "{y32}", "showCorrectAnswer": true, "unitTests": [], "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "valuegenerators": [], "useCustomName": false, "checkingType": "absdiff", "adaptiveMarkingPenalty": 0, "answerSimplification": "all,fractionNumbers", "checkingAccuracy": 0.001, "marks": 1, "scripts": {}, "checkVariableNames": false}, {"showFeedbackIcon": true, "type": "jme", "showPreview": false, "variableReplacements": [], "vsetRangePoints": 5, "failureRate": 1, "customName": "", "answer": "{x42}", "showCorrectAnswer": true, "unitTests": [], "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "valuegenerators": [], "useCustomName": false, "checkingType": "absdiff", "adaptiveMarkingPenalty": 0, "answerSimplification": "all,fractionNumbers", "checkingAccuracy": 0.001, "marks": 1, "scripts": {}, "checkVariableNames": false}, {"showFeedbackIcon": true, "type": "jme", "showPreview": false, "variableReplacements": [], "vsetRangePoints": 5, "failureRate": 1, "customName": "", "answer": "{y42}", "showCorrectAnswer": true, "unitTests": [], "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "valuegenerators": [], "useCustomName": false, "checkingType": "absdiff", "adaptiveMarkingPenalty": 0, "answerSimplification": "all,fractionNumbers", "checkingAccuracy": 0.001, "marks": 1, "scripts": {}, "checkVariableNames": false}], "showFeedbackIcon": true, "customMarkingAlgorithm": "", "sortAnswers": false, "extendBaseMarkingAlgorithm": true, "prompt": "

For the following function:

\n

\\[ \\simplify{y = 2x^3-3{(x12+x22)}x^2+6{x12*x22}x+{c02}} \\]

\n

Determine the coordinates and the nature of the local extrema points.

\n

Minimum point: $\\big($ [[0]] $ , $ [[1]] $\\big)$ and maximum point: $\\big($ [[2]] $ , $ [[3]] $\\big)$

\n

Enter fractions in their simplest form.

", "variableReplacementStrategy": "originalfirst", "useCustomName": false, "type": "gapfill", "variableReplacements": [], "adaptiveMarkingPenalty": 0, "marks": 0, "scripts": {}, "showCorrectAnswer": true}, {"customName": "", "unitTests": [], "gaps": [{"showFeedbackIcon": true, "type": "jme", "showPreview": false, "variableReplacements": [], "vsetRangePoints": 5, "failureRate": 1, "customName": "", "answer": "{x33}", "showCorrectAnswer": true, "unitTests": [], "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "valuegenerators": [], "useCustomName": false, "checkingType": "absdiff", "adaptiveMarkingPenalty": 0, "answerSimplification": "all,fractionNumbers", "checkingAccuracy": 0.001, "marks": 1, "scripts": {}, "checkVariableNames": false}, {"showFeedbackIcon": true, "type": "jme", "showPreview": false, "variableReplacements": [], "vsetRangePoints": 5, "failureRate": 1, "customName": "", "answer": "{y33}", "showCorrectAnswer": true, "unitTests": [], "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "valuegenerators": [], "useCustomName": false, "checkingType": "absdiff", "adaptiveMarkingPenalty": 0, "answerSimplification": "all,fractionNumbers", "checkingAccuracy": 0.001, "marks": 1, "scripts": {}, "checkVariableNames": false}, {"showFeedbackIcon": true, "type": "jme", "showPreview": false, "variableReplacements": [], "vsetRangePoints": 5, "failureRate": 1, "customName": "", "answer": "{x43}", "showCorrectAnswer": true, "unitTests": [], "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "valuegenerators": [], "useCustomName": false, "checkingType": "absdiff", "adaptiveMarkingPenalty": 0, "answerSimplification": "all,fractionNumbers", "checkingAccuracy": 0.001, "marks": 1, "scripts": {}, "checkVariableNames": false}, {"showFeedbackIcon": true, "type": "jme", "showPreview": false, "variableReplacements": [], "vsetRangePoints": 5, "failureRate": 1, "customName": "", "answer": "{y43}", "showCorrectAnswer": true, "unitTests": [], "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "valuegenerators": [], "useCustomName": false, "checkingType": "absdiff", "adaptiveMarkingPenalty": 0, "answerSimplification": "all,fractionNumbers", "checkingAccuracy": 0.001, "marks": 1, "scripts": {}, "checkVariableNames": false}], "showFeedbackIcon": true, "customMarkingAlgorithm": "", "sortAnswers": false, "extendBaseMarkingAlgorithm": true, "prompt": "

For the following function:

\n

\\[ \\simplify[All,fractionNumbers]{y = {1}/{3}x^3-{(x13+x23)}/{2}x^2+{x13*x23}x+{c03}} \\]

\n

Determine the coordinates and the nature of the local extrema points.

\n

Minimum point: $\\big($ [[0]] $ , $ [[1]] $\\big)$ and maximum point: $\\big($ [[2]] $ , $ [[3]] $\\big)$

\n

Enter fractions in their simplest form.

", "variableReplacementStrategy": "originalfirst", "useCustomName": false, "type": "gapfill", "variableReplacements": [], "adaptiveMarkingPenalty": 0, "marks": 0, "scripts": {}, "showCorrectAnswer": true}], "statement": "", "type": "question", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Terry Young", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3130/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Terry Young", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3130/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}