// Numbas version: finer_feedback_settings {"name": "Lois's copy of Matrix Operations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a21", "a22", "ab", "ans2", "b22", "b21", "at", "ans", "d11", "d12", "p", "pc", "b12", "b11", "test", "c12", "c11", "adj", "a", "a11", "a12", "c", "b", "c22", "bat", "c21", "d", "deta", "d22", "det", "q", "d21", "u", "qd", "v"], "name": "Lois's copy of Matrix Operations", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "
(a)
\n$\\var{a}+\\var{b}=\\var{u}$
\nJust add corresponding elements together.
\n(b)
\n$\\var{p}\\var{c}-\\var{q}\\var{d}$
\nMultiply each element of the first matrix by $\\var{p}$...
\n$\\var{p}\\var{c}=\\var{pc}$
\n...and multiply each element of the second matrix by $\\var{q}$.
$\\var{q}\\var{d}=\\var{qd}$
\nFinally, subtract corresponding elements
\n$\\var{p}\\var{c}-\\var{q}\\var{d}=\\var{pc}-\\var{qd}=\\var{v}$
\nSee this link for more on this topic http://www.mathcentre.ac.uk/resources/uploaded/sigma-matrices3-2009-1.pdf
\n\n\n\n\n\n\n
\n | \n | \n | \n |
\n | \n |
$\\var{a}+\\var{b}$
\n\n$\\Bigg($ | \n[[0]] | \n[[1]] | \n$\\Bigg)$ | \n
[[2]] | \n[[3]] | \n
$\\var{p}\\var{c}-\\var{q}\\var{d}$
\n$\\Bigg($ | \n[[0]] | \n[[1]] | \n$\\Bigg)$ | \n
[[2]] | \n[[3]] | \n
Find the answers to the following matrix calculations, filling in your answers in the spaces provided.", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a21": {"definition": "random(-10..10#1)", "templateType": "anything", "group": "Ungrouped variables", "name": "a21", "description": ""}, "a22": {"definition": "if(test*a11=a21*a12,test+1,test)", "templateType": "anything", "group": "Ungrouped variables", "name": "a22", "description": ""}, "ab": {"definition": "a*b", "templateType": "anything", "group": "Ungrouped variables", "name": "ab", "description": ""}, "ans2": {"definition": "c-d", "templateType": "anything", "group": "Ungrouped variables", "name": "ans2", "description": ""}, "b22": {"definition": "random(-10..10#1)", "templateType": "anything", "group": "Ungrouped variables", "name": "b22", "description": ""}, "b21": {"definition": "random(-10..10#1)", "templateType": "anything", "group": "Ungrouped variables", "name": "b21", "description": ""}, "at": {"definition": "transpose(a)", "templateType": "anything", "group": "Ungrouped variables", "name": "at", "description": ""}, "ans": {"definition": "a+b", "templateType": "anything", "group": "Ungrouped variables", "name": "ans", "description": ""}, "d11": {"definition": "random(-10..10#1)", "templateType": "anything", "group": "Ungrouped variables", "name": "d11", "description": ""}, "d12": {"definition": "random(-10..10#1)", "templateType": "anything", "group": "Ungrouped variables", "name": "d12", "description": ""}, "pc": {"definition": "p*c", "templateType": "anything", "group": "Ungrouped variables", "name": "pc", "description": ""}, "b12": {"definition": "random(-10..10#1)", "templateType": "anything", "group": "Ungrouped variables", "name": "b12", "description": ""}, "d21": {"definition": "random(-10..10#1)", "templateType": "anything", "group": "Ungrouped variables", "name": "d21", "description": ""}, "b11": {"definition": "random(-10..10#1)", "templateType": "anything", "group": "Ungrouped variables", "name": "b11", "description": ""}, "test": {"definition": "random(-10..10#1)", "templateType": "anything", "group": "Ungrouped variables", "name": "test", "description": ""}, "c12": {"definition": "random(-10..10#1)", "templateType": "anything", "group": "Ungrouped variables", "name": "c12", "description": ""}, "c11": {"definition": "random(-10..10#1)", "templateType": "anything", "group": "Ungrouped variables", "name": "c11", "description": ""}, "adj": {"definition": "matrix([a22,-a12],[-a21,a11])", "templateType": "anything", "group": "Ungrouped variables", "name": "adj", "description": ""}, "c22": {"definition": "random(-10..10#1)", "templateType": "anything", "group": "Ungrouped variables", "name": "c22", "description": ""}, "a11": {"definition": "random(-10..10#1)", "templateType": "anything", "group": "Ungrouped variables", "name": "a11", "description": ""}, "a12": {"definition": "random(-10..10#1)", "templateType": "anything", "group": "Ungrouped variables", "name": "a12", "description": ""}, "bat": {"definition": "b*at", "templateType": "anything", "group": "Ungrouped variables", "name": "bat", "description": ""}, "c21": {"definition": "random(-10..10#1)", "templateType": "anything", "group": "Ungrouped variables", "name": "c21", "description": ""}, "a": {"definition": "matrix([a11,a12],[a21,a22])", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "matrix([c11,c12],[c21,c22])", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "matrix([b11,b12],[b21,b22])", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "matrix([d11,d12],[d21,d22])", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "deta": {"definition": "det(a)", "templateType": "anything", "group": "Ungrouped variables", "name": "deta", "description": ""}, "d22": {"definition": "random(-10..10#1)", "templateType": "anything", "group": "Ungrouped variables", "name": "d22", "description": ""}, "det": {"definition": "a11*a22-a21*a12", "templateType": "anything", "group": "Ungrouped variables", "name": "det", "description": ""}, "q": {"definition": "random(2..10#1)", "templateType": "anything", "group": "Ungrouped variables", "name": "q", "description": ""}, "p": {"definition": "random(-10..10#1 except 0 except 1 except q)", "templateType": "anything", "group": "Ungrouped variables", "name": "p", "description": ""}, "u": {"definition": "a+b", "templateType": "anything", "group": "Ungrouped variables", "name": "u", "description": ""}, "qd": {"definition": "q*d", "templateType": "anything", "group": "Ungrouped variables", "name": "qd", "description": ""}, "v": {"definition": "pc-qd", "templateType": "anything", "group": "Ungrouped variables", "name": "v", "description": ""}}, "metadata": {"description": "
Addition, subtraction and multiplication of 2 x 2 matrices and multiplication by a scalar.
\n(Last three parts of original question removed.)
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Lois Rollings", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/326/"}]}]}], "contributors": [{"name": "Lois Rollings", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/326/"}]}