// Numbas version: finer_feedback_settings {"name": "Integrating Factor 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Integrating Factor 1", "tags": [], "metadata": {"description": "

Using the IF to find the General Solution.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Integrating Factor Method:

\n

Find the General Solution of:
\\[\\simplify{{A}x^{{m}}}\\simplify{(d y)/(d x)+{B}}x^\\simplify{{n}+{m}}y=\\simplify{{D}x}^\\simplify{{n}+{m}}\\]

\n
Enter your answer as a formula: use the syntax c*e^(n*x^p) for $ce^{nx^p}$, not forgetting the * for multiplying arbitrary constants. Use lowercase $c$ for any constant of integration.
\n
\n
\n
\n
\n
\n
\n
\n
\n
\n
", "advice": "

\\(\\simplify{{A}x^{{m}}}\\simplify{(d y)/(d x)+{B}}x^\\simplify{{n}+{m}}y=\\simplify{{D}x}^\\simplify{{n}+{m}}\\) can be solved by the integrating factor method.

\n

Firstly divide both sides by \\(\\simplify{{A}x^{{m}}}\\) to obtain \\(\\simplify{(d y)/(d x)+{B}/{A}}\\simplify{x^{n}}y=\\simplify{{D}/{A}*x^{n}}\\)

\n

This is now in the standard form $\\displaystyle{\\frac{dy}{dx}+f(x)y=r(x)}$ which can be solved using the integrating factor $I=e^{\\int f(x)dx}$

\n

\n

In this example, $f(x) =\\simplify{{B}/{A} x^{n}}$ so $e^{\\int f(x)dx}=e^{\\int \\simplify{{B}/{A} x^{n} d x}}=e^{\\simplify{{B}/{(n+1)*A} x^{n+1}}}$

\n

\n

The integrating factor formula \\( y = \\frac{1}{I}\\int r(x) I dx\\) can be used with \\( r(x) = \\simplify{{D}/{A}x^{n}} \\) to obtain:

\n

\\[\\displaystyle  y =e^{\\simplify{-{B}/{(n+1)*A} x^{n+1}}} \\int \\simplify{{D}/{A}x^{{n}}}e^{\\simplify{{B}/{({n+1})*A} x^{n+1}}} dx\\]

\n

This can be solved using the substitution: \\( u= \\simplify{{B}/{(n+1)*A} x^{n+1}}\\) so \\( \\frac{du}{dx} = \\simplify{{B}/{A} x^{n}}\\) and therefore \\(\\simplify{x^{n}} dx = \\simplify{{A}/{B}}du\\), which gives:

\n

\\[\\displaystyle  y = e^{-u} \\int \\simplify{{D}/{B}e^u} du  = e^{-u} \\left[\\simplify{{D}/{B} e^u} + c\\right] =  \\simplify{{D}/{B}} + ce^{-u}\\] 

\n

Substituting back \\( u= \\simplify{{B}/{(n+1)*A} x^{n+1}}\\) results in a general solution: \\( y =  \\simplify{{D}/{B}} + ce^{\\simplify{-{B}/{(n+1)*A} x^{n+1}}} \\) 

\n

\n
\n
\n
", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "extensions": [], "variables": {"m": {"name": "m", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "1", "description": "", "templateType": "anything"}, "B": {"name": "B", "group": "Ungrouped variables", "definition": "A*(n+1)*H", "description": "

\n
\n
", "templateType": "anything"}, "H": {"name": "H", "group": "Ungrouped variables", "definition": "random(-1..3 except 0)", "description": "", "templateType": "anything"}, "A": {"name": "A", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything"}, "G": {"name": "G", "group": "Ungrouped variables", "definition": "random(-1..3 except 0)", "description": "", "templateType": "anything"}, "D": {"name": "D", "group": "Ungrouped variables", "definition": "G*B", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["G", "H", "A", "n", "B", "D", "m", "c"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Solution is:

\n

$y=\\;\\;$[[0]]

\n

Input all numbers as integers or fractions – not as decimals.

\n
\n
\n
\n
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{G} + c * e^(-{H}*x^{n+1})", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0.5, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input all numbers as integers or fractions.

"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Nick McCullen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/953/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Nick McCullen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/953/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}]}