// Numbas version: finer_feedback_settings {"name": "PrijsElasticiteit van de Vraag", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "PrijsElasticiteit van de Vraag", "tags": [], "metadata": {"description": "

Bereken prijselasticiteit van de vraag bij een eerstegraadsvraagfunctie

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Beschouw de vraagfunctie:\\[ p_v(q) = \\var{a} - \\simplify[all,FractionNumbers]{ {b} * q} .\\]
Bepaal de vraagprijselasticiteit in \\( p^* = \\var{p} \\).

", "advice": "

Je moet uit de gegeven vraagfunctie \\( q \\) uitrekenen als een functie in \\( p \\) :
\\[ q = q_v(p) = \\simplify[all,FractionNumbers]{({a}-p)/{b}} = \\simplify[all,FractionNumbers]{{a/b}}  - \\simplify[all,FractionNumbers]{{1/b}} \\cdot p .\\]

Bijgevolg is voor \\( p^* = \\var{p} \\) de vraagprijselasticiteit gelijk aan
\\[
\\varepsilon_p^v (p^*) = \\frac {d q_v} {d p} (p^*) \\cdot \\frac {p^*} {q_v (p^*)}  = -\\simplify[all,FractionNumbers]{{1/b}}  \\cdot \\frac {\\var{p}} {\\var{q}}  =  \\simplify[all,FractionNumbers]{{sol}}.
 \\]

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "p+b*q", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..5)/fctr", "description": "", "templateType": "anything", "can_override": false}, "q": {"name": "q", "group": "Ungrouped variables", "definition": "random(5..15)*fctr", "description": "", "templateType": "anything", "can_override": false}, "fctr": {"name": "fctr", "group": "Ungrouped variables", "definition": "random([2,4,5,10])", "description": "", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "random(5..15)", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "-1/b*p/q", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["p", "fctr", "q", "b", "a", "sol"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

De vraagprijselasticiteit in \\(  \\var{p} \\) bedraagt [[0]]. 

\n

", "stepsPenalty": 0, "steps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Bereken q als een functie van p: \\( q_v(p) = \\) 

", "answer": "{a/b}-{1/b}*p", "answerSimplification": "all,FractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "p", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Bereken de afgeleide van \\( q_v \\) naar p: \\(  \\dfrac {d q_v} {d p} (p) =  \\)

", "answer": "-{1/b}", "answerSimplification": "all,FractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Bereken de elasticiteit in \\( p^* \\): \\[ \\varepsilon_p^v (p^*) = \\frac {d q_v} {d p} (p^*) \\cdot \\frac {p^*} {q_v (p^*)} \\]

", "answer": "{sol}", "answerSimplification": "all,FractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "gaps": [{"type": "jme", "useCustomName": true, "customName": "VrElasticity", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sol}", "answerSimplification": "all,FractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Paul Verheyen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3610/"}], "resources": []}]}], "contributors": [{"name": "Paul Verheyen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3610/"}]}