// Numbas version: finer_feedback_settings
{"name": "Pearson2", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {"darr": {"definition": "if(n=1,a,darr(n-1,m,[random(1..m except a)]+a))", "type": "list", "language": "jme", "parameters": [["n", "number"], ["m", "number"], ["a", "list"]]}, "rk": {"definition": "\n /*This gives the ranking of the entries in a, c counts the ties */\n var out = [];\n for(var j=0;j
Wife $(X)$ | \n$\\sum x=\\;$[[0]] | \n$\\sum x^2=\\;$[[1]] | \n
---|---|---|
Husband $(Y)$ | \n$\\sum y=\\;$[[2]] | \n$\\sum y^2=\\;$[[3]] | \n
Also find $\\sum xy=\\;$[[4]] and then:
\n$\\displaystyle SSX = \\;$[[5]]
\n$\\displaystyle SSY = \\;$[[6]]
\n$\\displaystyle SPXY = \\;$[[7]]
\nHence calculate the correlation coefficient $r$:
\n$r=\\;$[[8]]
\n\n \n ", "gaps": [{"minvalue": "t[0]", "type": "numberentry", "maxvalue": "t[0]", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "ssq[0]", "type": "numberentry", "maxvalue": "ssq[0]", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "t[1]", "type": "numberentry", "maxvalue": "t[1]", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "ssq[1]", "type": "numberentry", "maxvalue": "ssq[1]", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "sxy", "type": "numberentry", "maxvalue": "sxy", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "ss[0]", "type": "numberentry", "maxvalue": "ss[0]", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "ss[1]", "type": "numberentry", "maxvalue": "ss[1]", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "spxy", "type": "numberentry", "maxvalue": "spxy", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "corrcoef-tol", "type": "numberentry", "maxvalue": "corrcoef+tol", "marks": 1.0, "showPrecisionHint": false}], "type": "gapfill", "marks": 0.0}, {"prompt": "\n
Give the value of the correlation coefficient you have found, choose the range for the $p$ value by looking up the relevant table. Input the required values from the table here:
\n$10\\%$ | \n$5\\%$ | \n$1\\%$ | \n$0.2\\%$ | \n
[[0]] | \n[[1]] | \n[[2]] | \n[[3]] | \n
Then make a decision based on the $p$-value you have found by choosing one of these options:
\n[[4]]
\n \n ", "gaps": [{"minvalue": 0.549, "type": "numberentry", "maxvalue": 0.549, "marks": 0.25, "showPrecisionHint": false}, {"minvalue": 0.632, "type": "numberentry", "maxvalue": 0.632, "marks": 0.25, "showPrecisionHint": false}, {"minvalue": 0.765, "type": "numberentry", "maxvalue": 0.765, "marks": 0.25, "showPrecisionHint": false}, {"minvalue": 0.847, "type": "numberentry", "maxvalue": 0.847, "marks": 0.25, "showPrecisionHint": false}, {"maxanswers": 0.0, "distractors": ["", "", "", "", ""], "matrix": "v", "shufflechoices": false, "minanswers": 0.0, "choices": ["$p \\leq 0.002$, very strong evidence to reject the null hypothesis that there is no association.", "$0.002 \\lt p \\leq 0.01$, strong evidence to reject the null hypothesis that there is no association.", "$0.01 \\lt p \\leq 0.05$, there is evidence to reject the null hypothesis that there is no association.", "$0.05 \\lt p \\leq 0.1$, weak evidence against, do not reject the null hypothesis but consider further investigation.", "$p \\gt 0.1$, no evidence to reject the null hypothesis that there is no association."], "displaytype": "radiogroup", "maxmarks": 0.0, "marks": 0.0, "displaycolumns": 1.0, "type": "1_n_2", "minmarks": 0.0}], "type": "gapfill", "marks": 0.0}], "extensions": ["stats"], "statement": "\nIt is well known that similarity in attitudes, beliefs and interests plays an important role in interpersonal attraction. A researcher developed a questionnaire which was completed by 10 married couples. One question sought to place each individual on a 20 point scale in which low scores represent liberal attitudes and high scores represent conservative attitudes. The data were:
\nCouple | $\\var{obj[0]}$ | $\\var{obj[1]}$ | $\\var{obj[2]}$ | $\\var{obj[3]}$ | $\\var{obj[4]}$ | $\\var{obj[5]}$ | $\\var{obj[6]}$ | $\\var{obj[7]}$ | $\\var{obj[8]}$ | $\\var{obj[9]}$ |
---|---|---|---|---|---|---|---|---|---|---|
Wife $(X)$ | \n$\\var{r1[0]}$ | \n$\\var{r1[1]}$ | \n$\\var{r1[2]}$ | \n$\\var{r1[3]}$ | \n$\\var{r1[4]}$ | \n$\\var{r1[5]}$ | \n$\\var{r1[6]}$ | \n$\\var{r1[7]}$ | \n$\\var{r1[8]}$ | \n$\\var{r1[9]}$ | \n
Husband $(Y)$ | \n$\\var{r2[0]}$ | \n$\\var{r2[1]}$ | \n$\\var{r2[2]}$ | \n$\\var{r2[3]}$ | \n$\\var{r2[4]}$ | \n$\\var{r2[5]}$ | \n$\\var{r2[6]}$ | \n$\\var{r2[7]}$ | \n$\\var{r2[8]}$ | \n$\\var{r2[9]}$ | \n
In this exercise you will find the Pearson correlation coefficent for the above paired data and comment on the significance of the calculated correlation.
\nThe null hypothesis you are testing is:
\n$H_0$: There is no association between the attitudes of wives and husbands.
\n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"aspcoef": {"definition": "abs(spcoef)", "name": "aspcoef"}, "spcoef": {"definition": "precround(1-6*ssd/(n*(n^2-1)),3)", "name": "spcoef"}, "vs": {"definition": "switch(aspcoef >=0.952,[1,0,0,0,0],aspcoef>=0.881,[0,1,0,0,0],aspcoef>=0.738,[0,0,1,0,0],aspcoef>=0.643,[0,0,0,1,0],[0,0,0,0,1])", "name": "vs"}, "sxy": {"definition": "sum(map(r1[x]*r2[x],x,0..n-1))", "name": "sxy"}, "spxy": {"definition": "sxy-t[0]*t[1]/n", "name": "spxy"}, "tol": {"definition": 0.001, "name": "tol"}, "ssq": {"definition": "[sum(map(x^2,x,r1)),sum(map(x^2,x,r2))]", "name": "ssq"}, "corrcoef": {"definition": "precround(spxy/sqrt(ss[0]*ss[1]),3)", "name": "corrcoef"}, "ssd": {"definition": "sum(map(x^2,x,d))", "name": "ssd"}, "rr2": {"definition": "rk(r2)", "name": "rr2"}, "rr1": {"definition": "rk(r1)", "name": "rr1"}, "d": {"definition": "list(vector(rr1)-vector(rr2))", "name": "d"}, "tsqovern": {"definition": "[t[0]^2/n,t[1]^2/n]", "name": "tsqovern"}, "obj": {"definition": "['A','B','C','D','E','F','G','H','I','J']", "name": "obj"}, "r1": {"definition": "darr(n,m,[random(1..20)])", "name": "r1"}, "r2": {"definition": "tesarr(r1,darr(n,m,[random(1..m)]),11,m)", "name": "r2"}, "ss": {"definition": "[ssq[0]-t[0]^2/n,ssq[1]-t[1]^2/n]", "name": "ss"}, "k": {"definition": 3.0, "name": "k"}, "m": {"definition": 20.0, "name": "m"}, "n": {"definition": 10.0, "name": "n"}, "t": {"definition": "[sum(r1),sum(r2)]", "name": "t"}, "v": {"definition": "switch(corrcoef >=0.847,[1,0,0,0,0],corrcoef>=0.765,[0,1,0,0,0],corrcoef>=0.632,[0,0,1,0,0],corrcoef>=0.549,[0,0,0,1,0],[0,0,0,0,1])", "name": "v"}}, "metadata": {"notes": "\n \t\t \t\t30/09/2102:
\n \t\t \t\tIntroduced three functions:
\n \t\t \t\t1. To produce the ranking of a list of 8 numbers.
\n \t\t \t\t2. To produce a list of 8 numbers from a scale of 1..20 which are all distinct.
\n \t\t \t\t3. To produce the maximum of the numbers in a list.
\n \t\t \t\t4. Given an array such as in 2. to find another such array which has max diff between any two corresponding entries less than a given number. This is to ensure that the two array produced do not differ too much, as the point of the exercise is to show that there is a positive high correlation.
\n \t\t \t\t\n \t\t \n \t\t", "description": "
Calculate the Pearson correlation coefficient on paired data and comment on the significance.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}