// Numbas version: finer_feedback_settings {"name": "Pearson2", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {"darr": {"definition": "if(n=1,a,darr(n-1,m,[random(1..m except a)]+a))", "type": "list", "language": "jme", "parameters": [["n", "number"], ["m", "number"], ["a", "list"]]}, "rk": {"definition": "\n /*This gives the ranking of the entries in a, c counts the ties */\n var out = [];\n for(var j=0;ja[i]){s+=1;}\n else\n if(a[j]==a[i]){c+=1;}\n }\n out[j]=(2*s+c+1)/2;\n }\n return out;\n \n ", "type": "list", "language": "javascript", "parameters": [["a", "list"]]}, "pstdev": {"definition": "sqrt(abs(l)/(abs(l)-1))*stdev(l)", "type": "number", "language": "jme", "parameters": [["l", "list"]]}, "marr": {"definition": "if(length(a)=2,max(a[0],a[1]),max(a[0],marr(a[1..length(a)])))", "type": "number", "language": "jme", "parameters": [["a", "list"]]}, "tesarr": {"definition": "if(marr(map(abs(x),x,list(vector(a)-vector(b))))The answers to all parts are given on revealing.

", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "\n \n \n \n \n \n \n \n \n \n \n \n
Wife $(X)$$\\sum x=\\;$[[0]]$\\sum x^2=\\;$[[1]]
Husband $(Y)$$\\sum y=\\;$[[2]]$\\sum y^2=\\;$[[3]]
\n

Also find $\\sum xy=\\;$[[4]] and then:

\n

$\\displaystyle SSX = \\;$[[5]]

\n

$\\displaystyle SSY = \\;$[[6]]

\n

$\\displaystyle SPXY = \\;$[[7]]

\n

Hence calculate the correlation coefficient $r$:

\n

$r=\\;$[[8]]

\n

 

\n \n ", "gaps": [{"minvalue": "t[0]", "type": "numberentry", "maxvalue": "t[0]", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "ssq[0]", "type": "numberentry", "maxvalue": "ssq[0]", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "t[1]", "type": "numberentry", "maxvalue": "t[1]", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "ssq[1]", "type": "numberentry", "maxvalue": "ssq[1]", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "sxy", "type": "numberentry", "maxvalue": "sxy", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "ss[0]", "type": "numberentry", "maxvalue": "ss[0]", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "ss[1]", "type": "numberentry", "maxvalue": "ss[1]", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "spxy", "type": "numberentry", "maxvalue": "spxy", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "corrcoef-tol", "type": "numberentry", "maxvalue": "corrcoef+tol", "marks": 1.0, "showPrecisionHint": false}], "type": "gapfill", "marks": 0.0}, {"prompt": "\n

Give the value of the correlation coefficient you have found, choose the range for the $p$ value by looking up the relevant table. Input the required values from the table here:

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
$10\\%$$5\\%$$1\\%$$0.2\\%$
[[0]][[1]][[2]][[3]]
\n

Then make a decision based on the $p$-value you have found by choosing one of these options:

\n

[[4]]

\n \n ", "gaps": [{"minvalue": 0.549, "type": "numberentry", "maxvalue": 0.549, "marks": 0.25, "showPrecisionHint": false}, {"minvalue": 0.632, "type": "numberentry", "maxvalue": 0.632, "marks": 0.25, "showPrecisionHint": false}, {"minvalue": 0.765, "type": "numberentry", "maxvalue": 0.765, "marks": 0.25, "showPrecisionHint": false}, {"minvalue": 0.847, "type": "numberentry", "maxvalue": 0.847, "marks": 0.25, "showPrecisionHint": false}, {"maxanswers": 0.0, "distractors": ["", "", "", "", ""], "matrix": "v", "shufflechoices": false, "minanswers": 0.0, "choices": ["$p \\leq 0.002$, very strong evidence to reject the null hypothesis that there is no association.", "$0.002 \\lt p \\leq 0.01$, strong evidence to reject the null hypothesis that there is no association.", "$0.01 \\lt p \\leq 0.05$, there is evidence to reject the null hypothesis that there is no association.", "$0.05 \\lt p \\leq 0.1$, weak evidence against, do not reject the null hypothesis but consider further investigation.", "$p \\gt 0.1$, no evidence to reject the null hypothesis that there is no association."], "displaytype": "radiogroup", "maxmarks": 0.0, "marks": 0.0, "displaycolumns": 1.0, "type": "1_n_2", "minmarks": 0.0}], "type": "gapfill", "marks": 0.0}], "extensions": ["stats"], "statement": "\n

It is well known that similarity in attitudes, beliefs and interests plays an important role in interpersonal attraction. A researcher developed a questionnaire which was completed by 10 married couples. One question sought to place each individual on a 20 point scale in which low scores represent liberal attitudes and high scores represent conservative attitudes. The data were:

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Couple$\\var{obj[0]}$$\\var{obj[1]}$$\\var{obj[2]}$$\\var{obj[3]}$$\\var{obj[4]}$$\\var{obj[5]}$$\\var{obj[6]}$$\\var{obj[7]}$$\\var{obj[8]}$$\\var{obj[9]}$
Wife $(X)$$\\var{r1[0]}$$\\var{r1[1]}$$\\var{r1[2]}$$\\var{r1[3]}$$\\var{r1[4]}$$\\var{r1[5]}$$\\var{r1[6]}$$\\var{r1[7]}$$\\var{r1[8]}$$\\var{r1[9]}$
Husband $(Y)$$\\var{r2[0]}$$\\var{r2[1]}$$\\var{r2[2]}$$\\var{r2[3]}$$\\var{r2[4]}$$\\var{r2[5]}$$\\var{r2[6]}$$\\var{r2[7]}$$\\var{r2[8]}$$\\var{r2[9]}$
\n

In this exercise you will find the Pearson correlation coefficent for the above paired data and comment on the significance of the calculated correlation.

\n

The null hypothesis you are testing is:

\n

$H_0$: There is no association between the attitudes of wives and husbands.

\n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"aspcoef": {"definition": "abs(spcoef)", "name": "aspcoef"}, "spcoef": {"definition": "precround(1-6*ssd/(n*(n^2-1)),3)", "name": "spcoef"}, "vs": {"definition": "switch(aspcoef >=0.952,[1,0,0,0,0],aspcoef>=0.881,[0,1,0,0,0],aspcoef>=0.738,[0,0,1,0,0],aspcoef>=0.643,[0,0,0,1,0],[0,0,0,0,1])", "name": "vs"}, "sxy": {"definition": "sum(map(r1[x]*r2[x],x,0..n-1))", "name": "sxy"}, "spxy": {"definition": "sxy-t[0]*t[1]/n", "name": "spxy"}, "tol": {"definition": 0.001, "name": "tol"}, "ssq": {"definition": "[sum(map(x^2,x,r1)),sum(map(x^2,x,r2))]", "name": "ssq"}, "corrcoef": {"definition": "precround(spxy/sqrt(ss[0]*ss[1]),3)", "name": "corrcoef"}, "ssd": {"definition": "sum(map(x^2,x,d))", "name": "ssd"}, "rr2": {"definition": "rk(r2)", "name": "rr2"}, "rr1": {"definition": "rk(r1)", "name": "rr1"}, "d": {"definition": "list(vector(rr1)-vector(rr2))", "name": "d"}, "tsqovern": {"definition": "[t[0]^2/n,t[1]^2/n]", "name": "tsqovern"}, "obj": {"definition": "['A','B','C','D','E','F','G','H','I','J']", "name": "obj"}, "r1": {"definition": "darr(n,m,[random(1..20)])", "name": "r1"}, "r2": {"definition": "tesarr(r1,darr(n,m,[random(1..m)]),11,m)", "name": "r2"}, "ss": {"definition": "[ssq[0]-t[0]^2/n,ssq[1]-t[1]^2/n]", "name": "ss"}, "k": {"definition": 3.0, "name": "k"}, "m": {"definition": 20.0, "name": "m"}, "n": {"definition": 10.0, "name": "n"}, "t": {"definition": "[sum(r1),sum(r2)]", "name": "t"}, "v": {"definition": "switch(corrcoef >=0.847,[1,0,0,0,0],corrcoef>=0.765,[0,1,0,0,0],corrcoef>=0.632,[0,0,1,0,0],corrcoef>=0.549,[0,0,0,1,0],[0,0,0,0,1])", "name": "v"}}, "metadata": {"notes": "\n \t\t \t\t

30/09/2102:

\n \t\t \t\t

Introduced three functions:

\n \t\t \t\t

1. To produce the ranking of a list of 8 numbers.

\n \t\t \t\t

2. To produce a list of 8 numbers from a scale of 1..20 which are all distinct.

\n \t\t \t\t

3. To produce the maximum of the numbers in a list.

\n \t\t \t\t

4. Given an array such as in 2. to find another such array which has max diff between any two corresponding entries less than a given number. This is to ensure that the two array produced do not differ too much, as the point of the exercise is to show that there is a positive high correlation.

\n \t\t \t\t

 

\n \t\t \n \t\t", "description": "

Calculate the Pearson correlation coefficient on paired data and comment on the significance.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}