// Numbas version: finer_feedback_settings {"name": "Electrostatic potential and equipotentials", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Electrostatic potential and equipotentials", "tags": ["coulomb", "elec", "potential", "tut1"], "metadata": {"description": "
The electrostatic potential due to a point charge is calculated at three points, who of which are at the same distance but different directions. This relates to the idea that the equipoptentials of a point charge are spheres centred on the charge, so all points at the same distance are at the same potential.
This question requires unit conversion, numerical calculations and some critical evaluation.
", "licence": "All rights reserved"}, "statement": "A point charge is placed at the origin of a Cartesian co-ordinate system, in vacuum. In this problem we shall use the standard boundary condition for the electrostatic potential from a point charge, i.e. $V(\\infty)=0\\,\\text{V}$.
\nWhen providing numerical answers you may express them using scientific notation. Express values to four significant figures and use the values of physical constants as provided in the course notes.
", "advice": "Quantiative errors may occur due to unit conversion errors.
\nA common error is mis-remembering the Coulomb potential which is an inverse distance rule, and not an inverse-square (which is what we see for the electric field in Coulomb's Law). If you squared the distance, revise this section of the course.
\nThe correct formula for the electrostatic potential due to a point charge, taking the boudary condition that $V(\\infty)=0$, is
\n$\\displaystyle V(r)=\\frac{q}{4\\pi\\varepsilon r}$
\nwhere $r$ is the distance from the point charge. Note, the electrostatic potential is a scalar field - it does not have a direction.
\nIf you calculated the distance and potential at point $c$, then you may have not understood the symmetry of the system and the idea that a point charge has spherical equipotentials. Since the distance from the point charge to the points $a$ and $c$ are the same, so is the electrostatic potential.
\nThe potential difference between point $c$ and 'infinity' is obtainable directly from the definition of the potential difference, which is the energy per unit charge. Therefore the energy gained (they are both positive charges so therefore repel) is {q2}×10−6×$V_c$.
", "rulesets": {}, "extensions": [], "variables": {"const": {"name": "const", "group": "Ungrouped variables", "definition": "(10^(-4))/(4*pi*eps0)", "description": "$1/4\\pi\\varepsilon_0$ and a factor of 10,000 to convert cm and microC to get V in SI units.
", "templateType": "anything"}, "Vb": {"name": "Vb", "group": "Ungrouped variables", "definition": "q1*const/sqrt(x1^2+x1^2)", "description": "Electrostatic potential at (x1,x1) in V.
", "templateType": "anything"}, "q1": {"name": "q1", "group": "Ungrouped variables", "definition": "random(10..100#10)*1.0", "description": "Randomised value of the charge at the origin in $mu$C.
", "templateType": "anything"}, "Va": {"name": "Va", "group": "Ungrouped variables", "definition": "q1*const/sqrt(x1^2+x2^2)", "description": "Electrostatic potential at (x1,x2) in V.
", "templateType": "anything"}, "rc": {"name": "rc", "group": "Ungrouped variables", "definition": "ra", "description": "Distance of point c from the charge in cm.
", "templateType": "anything"}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "random(5..20#1)*1.0", "description": "First $x$-location in cm.
", "templateType": "anything"}, "Vc": {"name": "Vc", "group": "Ungrouped variables", "definition": "Va", "description": "Electrostatic potential at (x2,x1) in V.
", "templateType": "anything"}, "eps0": {"name": "eps0", "group": "Ungrouped variables", "definition": "decimal(8.854*10^(-12))", "description": "Permittivity of free space (F/m) to four significant figures.
", "templateType": "anything"}, "rb": {"name": "rb", "group": "Ungrouped variables", "definition": "sqrt(x1^2+x1^2)", "description": "Distance of point b from the charge in cm.
", "templateType": "anything"}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "random(5..20#1 except x1)*1.0", "description": "Second $x$-position in cm.
", "templateType": "anything"}, "ra": {"name": "ra", "group": "Ungrouped variables", "definition": "sqrt(x1^2+x2^2)", "description": "Distance of point a from the charge in cm.
", "templateType": "anything"}, "work": {"name": "work", "group": "Ungrouped variables", "definition": "q2*Vc*10^-6", "description": "", "templateType": "anything"}, "q2": {"name": "q2", "group": "Ungrouped variables", "definition": "random(1..100 except q1)*1.0", "description": "Primitive charge
", "templateType": "anything"}, "test": {"name": "test", "group": "Ungrouped variables", "definition": "dec(1.6*10^-1.0)*1000000", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["const", "eps0", "q1", "ra", "rb", "rc", "Va", "Vb", "Vc", "x1", "x2", "work", "q2", "test"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Potential at $a$", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the electrostitic potential at the point $a$, with co-ordinates $x=${x1} cm, $y=${x2} cm, $z=$0 cm for a point charge of {q1} $\\mu$C located at the origin?
\n$r_a=$ [[1]] cm.
\n$V(r_a)=$[[0]] Volts.
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "V_a", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "Va*0.995", "maxValue": "Va*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "r_a", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ra*0.995", "maxValue": "ra*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Potential at $b$", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the electrostitic potential at the point $b$, with co-ordinates $x=${x1} cm, $y=${x1} cm, $z=$0 cm for a point charge of {q1} $\\mu$C located at the origin?
\n$r_b=$ [[1]] cm.
\n$V(r_b)=$[[0]] Volts.
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "V_b", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "Vb*0.995", "maxValue": "Vb*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "r_b", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "rb*0.95", "maxValue": "rb*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Potential at $c$", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the electrostitic potential at the point $c$, with co-ordinates $x=${x2} cm, $y=${x1} cm, $z=$0 cm for the point charge of {q1} $\\mu$C located at the origin?
\n$r_c=$ [[1]] cm.
\n$V(r_c)=$[[0]] Volts.
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "V_c", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "Vc*0.995", "maxValue": "Vc*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "r_c", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "rc*0.995", "maxValue": "rc*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "1_n_2", "useCustomName": true, "customName": "Relationship of points", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Two of the three values of $V(r_a)$, $V(r_b)$ and $V(r_c)$ have the same value. This is because...
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "1", "showCellAnswerState": true, "choices": ["The points are in the same direction from the charge.", "The points are at the same distance from the charge.", "Random chance - there's no underlying reason.", "Conservation of energy", "Conservation of momentum", "The principle of superposition"], "matrix": [0, "1", 0, 0, 0, 0], "distractors": ["No - equipotenials of a point charge are spheres centred upon it.", "Yes - equipotenials of a point charge are spheres centred upon it.", "No - equipotenials of a point charge are spheres centred upon it.", "", "", ""]}, {"type": "gapfill", "useCustomName": true, "customName": "Energy", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "A point charge of {q2} μC point is initially placed at $c$. The repulsive force moves it far from the origin. Taking it's final position to be effectively infinitly far from the {q1} μC point charge at the origin, how much energy does this second charge gain in this process?
\nEnergy gained = [[0]] J
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Energy", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "work*0.999", "maxValue": "work*1.001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}]}]}], "contributors": [{"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}]}