// Numbas version: finer_feedback_settings {"name": "Solenoid - reversed order question", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Solenoid - reversed order question", "tags": ["field", "flux", "mag", "mid1819", "solenoid"], "metadata": {"description": "Combine familiar questions in a slightly unfamiliar order.", "licence": "All rights reserved"}, "statement": "

A toroidal solenoid is constructed using an iron core, {turns} turns of wire carrying a current of {current} A. The torus has a circular cross-section of area {areacm} cm2, and diameter of {diametercm} cm.

\n

When providing numerical answers you may express them using scientific notation.  Express values to four significant figures and use the values of physical constants as provided in the course notes.

", "advice": "

The equations linking the properties of a solenoid inductor should be familiar.  This question starts in the familiar way,

\n

$\\displaystyle {\\rm MMF}=Ni$

\n

$\\displaystyle |\\vec{H}|= {\\rm MMF\\over path~length}={Ni\\over \\pi d}$,

\n

where $d$ is the diameter of the ring. However, then the pathway differs in that we are provided with $\\phi$, and asked to calculate $B$ and $\\mu_r$.  This requires some alegbra

\n

$\\displaystyle \\phi =|\\vec{B}| A \\Rightarrow|\\vec{B}| = {\\phi\\over A}$

\n

and

\n

$\\displaystyle |\\vec{B}|= \\mu |\\vec{H}| = \\mu_0\\mu_r |\\vec{H}| \\Rightarrow \\mu_r = {|\\vec{B}|\\over \\mu_0|\\vec{H}| }$.

", "rulesets": {}, "extensions": [], "variables": {"mmf": {"name": "mmf", "group": "Ungrouped variables", "definition": "turns current", "description": "

Magnetomotive force, A

", "templateType": "anything"}, "bfield": {"name": "bfield", "group": "Ungrouped variables", "definition": "flux/area", "description": "

Magnetic flux density, T.

", "templateType": "anything"}, "hfield": {"name": "hfield", "group": "Ungrouped variables", "definition": "mmf/(pi diameter)", "description": "

Magnetising field strength, A/m.

", "templateType": "anything"}, "current": {"name": "current", "group": "Ungrouped variables", "definition": "random(0.5..1.0#0.05)", "description": "

Current throught the solenoid, A.

", "templateType": "anything"}, "diameter": {"name": "diameter", "group": "Ungrouped variables", "definition": "diametercm/100", "description": "

Diameter of the ring in m.

", "templateType": "anything"}, "areacm": {"name": "areacm", "group": "Ungrouped variables", "definition": "random(0.7..1.3#0.1)", "description": "

Cross-sectional area of core, cm^2.

", "templateType": "anything"}, "area": {"name": "area", "group": "Ungrouped variables", "definition": "areacm/10000", "description": "

Cross-sectional area of core, m^2.

", "templateType": "anything"}, "turns": {"name": "turns", "group": "Ungrouped variables", "definition": "random(60..90)*10", "description": "

Number of turns.

", "templateType": "anything"}, "flux": {"name": "flux", "group": "Ungrouped variables", "definition": "fluxu*10^-6", "description": "

Flux through core in Wb.

", "templateType": "anything"}, "fluxu": {"name": "fluxu", "group": "Ungrouped variables", "definition": "random(5..15)", "description": "

Flux through core in micro-Wb.

", "templateType": "anything"}, "mu0": {"name": "mu0", "group": "Ungrouped variables", "definition": "4 pi *10^-7", "description": "

Permeability of free space, H/m.

", "templateType": "anything"}, "diametercm": {"name": "diametercm", "group": "Ungrouped variables", "definition": "random(7..12)", "description": "

Diameter of the ring in cm.

", "templateType": "anything"}, "mur": {"name": "mur", "group": "Ungrouped variables", "definition": "bfield/hfield /mu0", "description": "

Relative permeability of the core.

", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["area", "areacm", "bfield", "current", "diameter", "diametercm", "flux", "fluxu", "hfield", "mmf", "mu0", "mur", "turns"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "MMF", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Calculate the magnetomotive force generate by the current in the coil.

\n

MMF= [[0]] A

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "mmf", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "mmf*0.995", "maxValue": "mmf*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "H-field", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Calculate the magnetising field strength in the core.

\n

$|\\vec{H}|=$[[0]] A/m

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "hfield", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [{"variable": "mmf", "part": "p0g0", "must_go_first": false}], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "hfield*0.995", "maxValue": "hfield*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "B-field", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

If the flux passing through the core is {fluxu}$\\mu$Wb, calculate the magnetic flux density in the core.

\n

$|\\vec{B}|=$[[0]] T

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "bfield", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "bfield*0.995", "maxValue": "bfield*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Relative permeability", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Hence, calculate the relative permeability of the core.

\n

$\\mu_r=$[[0]] 

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "mur", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [{"variable": "bfield", "part": "p2g0", "must_go_first": false}, {"variable": "hfield", "part": "p1g0", "must_go_first": false}], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "mur*0.995", "maxValue": "mur*1.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en", "scientific"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "type": "question", "contributors": [{"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}]}]}], "contributors": [{"name": "Jon Goss", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3925/"}]}