// Numbas version: finer_feedback_settings {"name": "Sheet 2 Q9 - Rules of differentiation with custom feedback", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Sheet 2 Q9 - Rules of differentiation with custom feedback", "tags": [], "metadata": {"description": "Differentiation by rule question with feedback given for anticipated student errors.", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "
Find $\\displaystyle \\frac{dy}{dx}$ if $y=\\cos x - 12 \\ln x$.
", "advice": "", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\displaystyle \\frac{dy}{dx}=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "malrules:\n [\n [\"sin(x)-12/x\", \"Almost there! Double check the rule for differentiating $\\\\cos x$.\"],\n [\"(cos(x)-12)*1/x-sin(x)*ln(x)\", \"The function you are asked to differentiate consists of two terms - one $\\\\textit{subtracted}$ from the other, not $\\\\textit{multiplied}$. (Note: If there are no brackets, a $+$ or a $-$ sign separates what came before it from what comes after it.)\"],\n [\"(cos(x)-12)*1/x+sin(x)*ln(x)\", \"The function you are asked to differentiate consists of two terms - one $\\\\textit{subtracted}$ from the other, not $\\\\textit{multiplied}$. (Note: If there are no brackets, a $+$ or a $-$ sign separates what came before it from what comes after it.)\"] \n ]\n\nparsed_malrules: \n map(\n [\"expr\":parse(x[0]),\"feedback\":x[1]],\n x,\n malrules\n )\n\nagree_malrules (Do the student's answer and the expected answer agree on each of the sets of variable values?):\n map(\n len(filter(not x ,x,map(\n try(\n resultsEqual(unset(question_definitions,eval(studentexpr,vars)),unset(question_definitions,eval(malrule[\"expr\"],vars)),settings[\"checkingType\"],settings[\"checkingAccuracy\"]),\n message,\n false\n ),\n vars,\n vset\n )))