// Numbas version: finer_feedback_settings {"name": "Shaheen's copy of De Moivre's Theorem: Positive Powers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Shaheen's copy of De Moivre's Theorem: Positive Powers", "tags": [], "metadata": {"description": "

Find modulus and argument of two complex numbers.

Then use De Moivre's Theorem to find powers of the complex numbers.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Use de Moivre's theorem to write the following complex number in the form $a+bi$.

\n

Remember that the argument of a complex numbers lies in the range $-\\pi \\lt \\theta \\le \\pi$.

\n

Important

\n

When calculating the final answer in part (iii), you must use whole number values (integers), otherwise the final answer will not be marked as correct.

", "advice": "

Given a complex number $z=r(\\cos(\\theta)+i\\sin(\\theta))$ de Moivre's theorem states that $z^n=r^n(\\cos(n\\theta)+i\\sin(n\\theta))$ for an integer power $n$.
So if we know the modulus $r$ and the argument $\\theta$ for $z$ then the theorem provides a way of calculating $z^n$.

\n

As usual, you must be careful that the argument is calculated correctly by paying attention to the quadrant of the complex plane in which the complex number lies.

\n

Also remember that for this question, arguments of complex numbers lie in the range $-\\pi \\lt \\theta \\le \\pi$.

\n

With the above in mind we can now answer the questions:

\n

a)

\n

Modulus

\n

\\[ \\begin{eqnarray*} |\\var{z1}|&=&\\sqrt{(\\var{a1})^2+(\\var{b1})^2}\\\\ &=& \\var{abs(z1)}\\\\ &=&\\var{ans1} \\end{eqnarray*} \\] to 3 decimal places.

\n

Note that $r^{\\var{n2}}=|(\\var{z1})^{\\var{n2}}| =\\var{abs(z1)}^{\\var{n2}}=\\var{abs(z1)^n2}$ which we will use in the calculation for $(\\var{z1})^{\\var{n2}}$

\n

Argument

\n

{m1}.
Hence we see that:
\\[\\begin{eqnarray*} \\arg(\\var{z1}) &=& \\var{arg(z1)}\\\\ &=& \\var{arg1}\\; \\mbox{radians} \\end{eqnarray*} \\] to 3 decimal places.

\n

We have $\\arg((\\var{z1})^{\\var{n2}})=\\var{n2}\\times \\var{arg(z1)} = \\var{n2*arg(z1)}$ radians.

\n

Hence we have \\[\\begin{eqnarray*}(\\var{z1})^{\\var{n2}} &=& \\var{abs(z1)^n2}(\\cos(\\var{n2*arg(z1)})+\\sin(\\var{n2*arg(z1)})i)\\\\ &=& \\var{abs(z1)^n2}\\cos(\\var{n2*arg(z1)})+\\var{abs(z1)^n2}\\times\\sin(\\var{n2*arg(z1)})i\\\\ &=& \\simplify[std]{{a3}+{b3}i}. \\end{eqnarray*} \\] 

\n

b)

\n

Modulus

\n

\\[ \\begin{eqnarray*} |\\var{z2}|&=&\\sqrt{(\\var{a2})^2+(\\var{b2})^2}\\\\ &=& \\var{abs(z2)}\\\\ &=&\\var{ans2} \\end{eqnarray*} \\] to 3 decimal places.

\n

Note that $r^{\\var{n4}}=|(\\var{z2})^{\\var{n4}}| =\\var{abs(z2)}^{\\var{n4}}=\\var{abs(z2)^n4}$ which we will use in the calculation for $(\\var{z2})^{\\var{n4}}$

\n

Argument

\n

{m2}.
Hence we see that:
\\[\\begin{eqnarray*} \\arg(\\var{z2}) &=& \\var{arg(z2)}\\\\ &=& \\var{arg2}\\; \\mbox{radians} \\end{eqnarray*} \\] to 3 decimal places.

\n

We have $\\arg((\\var{z2})^{\\var{n4}})=\\var{n4}\\times \\var{arg(z2)} = \\var{n4*arg(z2)}$ radians.

\n

Hence we have \\[\\begin{eqnarray*}(\\var{z2})^{\\var{n4}} &=& \\var{abs(z2)^n4}(\\cos(\\var{n4*arg(z2)})+\\sin(\\var{n4*arg(z2)})i)\\\\ &=& \\var{abs(z2)^n4}\\cos(\\var{n4*arg(z2)})+\\var{abs(z2)^n4}\\times\\sin(\\var{n4*arg(z2)})i\\\\ &=& \\simplify[std]{{a4}+{b4}i}. \\end{eqnarray*} \\] 

\n

 

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "extensions": [], "variables": {"c4": {"name": "c4", "group": "Ungrouped variables", "definition": "if(a4=f,f+1,f)", "description": "", "templateType": "anything"}, "b3": {"name": "b3", "group": "Ungrouped variables", "definition": "precround(tb3,3)", "description": "", "templateType": "anything"}, "s5": {"name": "s5", "group": "Ungrouped variables", "definition": "switch(t=3,-1,1)", "description": "", "templateType": "anything"}, "arg4": {"name": "arg4", "group": "Ungrouped variables", "definition": "precround(arg(z4),3)", "description": "", "templateType": "anything"}, "b4": {"name": "b4", "group": "Ungrouped variables", "definition": "precround(tb4,3)", "description": "", "templateType": "anything"}, "n4": {"name": "n4", "group": "Ungrouped variables", "definition": "random(7..10)", "description": "", "templateType": "anything"}, "s7": {"name": "s7", "group": "Ungrouped variables", "definition": "switch(t=2,-1,t=3,1,-1)", "description": "", "templateType": "anything"}, "arg2": {"name": "arg2", "group": "Ungrouped variables", "definition": "precround(arg(z2),3)", "description": "", "templateType": "anything"}, "m1": {"name": "m1", "group": "Ungrouped variables", "definition": "switch(t=1,q4,t=2,q2,t=3,q3,q1)", "description": "", "templateType": "anything"}, "arg3": {"name": "arg3", "group": "Ungrouped variables", "definition": "precround(arg(z3),3)", "description": "", "templateType": "anything"}, "q4": {"name": "q4", "group": "Ungrouped variables", "definition": "'The complex number is in the fourth quadrant.'", "description": "", "templateType": "anything"}, "ans1": {"name": "ans1", "group": "Ungrouped variables", "definition": "precround(abs(z1),3)", "description": "", "templateType": "anything"}, "z3": {"name": "z3", "group": "Ungrouped variables", "definition": "c2+d2*i", "description": "", "templateType": "anything"}, "z1": {"name": "z1", "group": "Ungrouped variables", "definition": "a1+b1*i", "description": "", "templateType": "anything"}, "z4": {"name": "z4", "group": "Ungrouped variables", "definition": "a3+b3*i", "description": "", "templateType": "anything"}, "tb4": {"name": "tb4", "group": "Ungrouped variables", "definition": "(abs(z2)^n4)*sin(n4*arg(z2))", "description": "", "templateType": "anything"}, "ans3": {"name": "ans3", "group": "Ungrouped variables", "definition": "precround(abs(z3),3)", "description": "", "templateType": "anything"}, "ta3": {"name": "ta3", "group": "Ungrouped variables", "definition": "abs(z1)^n2*cos(n2*arg(z1))", "description": "", "templateType": "anything"}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "if(co=a1,co+1,co)", "description": "", "templateType": "anything"}, "s4": {"name": "s4", "group": "Ungrouped variables", "definition": "switch(t=1,-1,t=4,-1,1)", "description": "", "templateType": "anything"}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "s5*random(1..3)", "description": "", "templateType": "anything"}, "ans4": {"name": "ans4", "group": "Ungrouped variables", "definition": "precround(abs(z4),3)", "description": "", "templateType": "anything"}, "z6": {"name": "z6", "group": "Ungrouped variables", "definition": "c4+d4*i", "description": "", "templateType": "anything"}, "m2": {"name": "m2", "group": "Ungrouped variables", "definition": "switch(t=1,q2,t=2,q1,t=3,q4,q2)", "description": "", "templateType": "anything"}, "m4": {"name": "m4", "group": "Ungrouped variables", "definition": "switch(t=1,q1,t=2,q3,t=3,q2,q4)", "description": "", "templateType": "anything"}, "q1": {"name": "q1", "group": "Ungrouped variables", "definition": "'The complex number is in the first quadrant.'", "description": "", "templateType": "anything"}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "templateType": "anything"}, "s1": {"name": "s1", "group": "Ungrouped variables", "definition": "switch(t=1,1,t=4,1,-1)", "description": "", "templateType": "anything"}, "tol": {"name": "tol", "group": "Ungrouped variables", "definition": "0.001", "description": "", "templateType": "anything"}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "s1*random(1..3)", "description": "", "templateType": "anything"}, "co": {"name": "co", "group": "Ungrouped variables", "definition": "s4*random(1..3)", "description": "", "templateType": "anything"}, "tb3": {"name": "tb3", "group": "Ungrouped variables", "definition": "abs(z1)^n2*sin(n2*arg(z1))", "description": "", "templateType": "anything"}, "s2": {"name": "s2", "group": "Ungrouped variables", "definition": "switch(t=1,-1,t=3,-1,1)", "description": "", "templateType": "anything"}, "s3": {"name": "s3", "group": "Ungrouped variables", "definition": "switch(t=1,1,t=2,-1,t=3,-1,1)", "description": "", "templateType": "anything"}, "m3": {"name": "m3", "group": "Ungrouped variables", "definition": "switch(t=1,q3,t=2,q4,t=3,q1,q3)", "description": "", "templateType": "anything"}, "n2": {"name": "n2", "group": "Ungrouped variables", "definition": "random(7..10)", "description": "", "templateType": "anything"}, "d2": {"name": "d2", "group": "Ungrouped variables", "definition": "s7*random(1..9)", "description": "", "templateType": "anything"}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "s6*random(1..9)", "description": "", "templateType": "anything"}, "z5": {"name": "z5", "group": "Ungrouped variables", "definition": "a4+b4*i", "description": "", "templateType": "anything"}, "d4": {"name": "d4", "group": "Ungrouped variables", "definition": "s5*random(1..9)", "description": "", "templateType": "anything"}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}, "z2": {"name": "z2", "group": "Ungrouped variables", "definition": "a2+b2*i", "description": "", "templateType": "anything"}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "s2*random(1..3)", "description": "", "templateType": "anything"}, "s8": {"name": "s8", "group": "Ungrouped variables", "definition": "switch(t=1,1,t=4,-1,t=3,1,-1)", "description": "", "templateType": "anything"}, "q3": {"name": "q3", "group": "Ungrouped variables", "definition": "'The complex number is in the third quadrant.'", "description": "", "templateType": "anything"}, "ans2": {"name": "ans2", "group": "Ungrouped variables", "definition": "precround(abs(z2),3)", "description": "", "templateType": "anything"}, "ta4": {"name": "ta4", "group": "Ungrouped variables", "definition": "(abs(z2)^n4)*cos(n4*arg(z2))", "description": "", "templateType": "anything"}, "a3": {"name": "a3", "group": "Ungrouped variables", "definition": "precround(ta3,3)", "description": "", "templateType": "anything"}, "a4": {"name": "a4", "group": "Ungrouped variables", "definition": "precround(ta4,3)", "description": "", "templateType": "anything"}, "q2": {"name": "q2", "group": "Ungrouped variables", "definition": "'The complex number is in the second quadrant.'", "description": "", "templateType": "anything"}, "s6": {"name": "s6", "group": "Ungrouped variables", "definition": "switch(t=1,-1,t=4,-1,1)", "description": "", "templateType": "anything"}, "arg1": {"name": "arg1", "group": "Ungrouped variables", "definition": "precround(arg(z1),3)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["co", "ans1", "arg2", "ans3", "ans4", "tb4", "b4", "b1", "b2", "b3", "d4", "d2", "z6", "q1", "q3", "q2", "q4", "s3", "s2", "s1", "s7", "s6", "s5", "s4", "m4", "m1", "m3", "arg1", "z3", "tb3", "ta4", "arg3", "tol", "ta3", "arg4", "m2", "a1", "a3", "s8", "a4", "z4", "z5", "ans2", "z1", "z2", "c4", "f", "a2", "t", "n2", "n4", "c2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

Find the modulus and argument of $\\var{z1}$  correct to 3 decimal places.

\n

(i) $|\\var{z1}|\\;=\\;$ [[0]], correct to 3 decimal places.

\n

(ii) $\\arg(\\var{z1})\\;=\\;$[[1]] radians, correct to 3 decimal places.

\n

Hence find:

\n

(iii) $(\\var{z1})^{\\var{n2}}\\;=\\;$[[2]]

\n

Input as a complex number, with integer values for the real and imaginary parts.

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "ans1-tol", "maxValue": "ans1+tol", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "arg1-tol", "maxValue": "arg1+tol", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 2, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{a3}+{b3}*i", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "valuegenerators": []}], "sortAnswers": false}], "type": "question", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Shaheen Charlwood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1819/"}], "resources": []}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Shaheen Charlwood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1819/"}]}