// Numbas version: finer_feedback_settings {"name": "Productiefunctie: outputmaximalisatie bij gegeven kosten", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Productiefunctie: outputmaximalisatie bij gegeven kosten", "tags": [], "metadata": {"description": "

Maximaliseer output bij gegeven kosten

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Een bedrijf heeft de volgende productiefunctie in termen van de ingezette hoeveelheden arbeid $A$ en kapitaal $K$: \\[ \\phi(A,K)= \\var{c} \\cdot A^{\\var{alpha}}\\cdot K^{\\var{beta}}.\\]De  prijs per eenheid arbeid bedraagt $w_A = \\var{wA}$ en de prijs per eenheid kapitaal is $w_K = \\var{wK}$.
Maximaliseer de productieoutput van dit bedrijf bij een vooropgestelde kostprijs {kostengeg}.

", "advice": "

Stap 1: Formuleer het maximalisatieprobleem.
\\begin{eqnarray}
\\max_{A,K} \\phi(A,K)  &=& \\var{c} \\cdot A^{\\var{alpha}}\\cdot K^{\\var{beta}}\\\\
\\mbox{als}  &&  w_A \\cdot A + w_K \\cdot K = \\var{kostengeg} \\\\
\\end{eqnarray}

\n

Stap 2: Bepaal de Lagrangefunctie.
\\begin{eqnarray}
L(A, K, \\lambda) &=& \\phi(A,K)+\\lambda (\\var{kostengeg} - w_A \\cdot A -w_K \\cdot K) \\\\
&=& \\var{c} \\cdot A^{\\var{alpha}}\\cdot K^{\\var{beta}} +\\lambda (\\var{kostengeg} - \\var{wA} \\cdot A - \\var{wK} \\cdot K)
\\end{eqnarray}

\n

Stap 3: Schrijf de eerste orde voorwaarden neer om de kritische punten van deze Lagrangefunctie te berekenen.
\\begin{eqnarray}
\\mbox{(1)   }\\quad \\frac{\\partial {{L}}}{\\partial A} & = & \\var{c} \\cdot \\var{alpha} \\cdot A^{\\var{alpha-1}}\\cdot K^{\\var{beta}}  - \\lambda \\cdot  \\var{wA}= 0\\\\
\\mbox{(2)   }\\quad \\frac{\\partial {{L}}}{\\partial K} & = & \\var{c} \\cdot \\var{beta} \\cdot A^{\\var{alpha}}\\cdot K^{\\var{beta-1}}  - \\lambda \\cdot \\var{wK}= 0 \\\\
\\mbox{(3)   }\\quad \\frac{\\partial {{L}}}{\\partial \\lambda} & = & \\var{kostengeg} - \\var{wA} \\cdot A -\\var{wK} \\cdot K = 0
\\end{eqnarray}

\n

Stap 4: Los dit stelsel vergelijkingen op naar $A$, $K$, en $\\lambda$.
Het oplossen van $\\lambda$ uit de vergelijkingen (1) en (2) levert na gelijkstelling:
\\begin{eqnarray}
\\frac{\\var{c} \\cdot \\var{alpha} \\cdot A^{\\var{alpha-1}}\\cdot K^{\\var{beta}}}{\\var{wA}} & = & \\frac{\\var{c} \\cdot \\var{beta} \\cdot A^{\\var{alpha}}\\cdot K^{\\var{beta-1}}}{\\var{wK}}\\\\
K & = & \\frac{\\var{wA*beta/gcd(wA*beta,wK*alpha)}}{\\var{wK*alpha/gcd(wA*beta,wK*alpha)}} \\cdot A
\\end{eqnarray}

\n

Substitutie hiervan in (3) geeft de optimale waarde van $A$:
\\[ A^* = \\var{Aopl} ,\\]
waardoor
\\[ K^* = \\var{Kopl} .\\]

\n

De maximale output bedraagt dan  \\[ \\var{output} .\\]

\n

{toonfiguuromgekeerd()}

", "rulesets": {}, "extensions": ["jsxgraph"], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"Aopl": {"name": "Aopl", "group": "Ungrouped variables", "definition": "wK*theta*alpha", "description": "

aopl

", "templateType": "anything", "can_override": false}, "alpha": {"name": "alpha", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "

alpha

", "templateType": "anything", "can_override": false}, "theta": {"name": "theta", "group": "Ungrouped variables", "definition": "random(2..3)", "description": "", "templateType": "anything", "can_override": false}, "wA": {"name": "wA", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "

wA

", "templateType": "anything", "can_override": false}, "output": {"name": "output", "group": "Ungrouped variables", "definition": "c*Aopl^(alpha)*Kopl^(beta)\n", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..4)", "description": "", "templateType": "anything", "can_override": false}, "beta": {"name": "beta", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "kostengeg": {"name": "kostengeg", "group": "Ungrouped variables", "definition": "wA*Aopl+wK*Kopl", "description": "", "templateType": "anything", "can_override": false}, "Kopl": {"name": "Kopl", "group": "Ungrouped variables", "definition": "wA*theta*beta", "description": "", "templateType": "anything", "can_override": false}, "wK": {"name": "wK", "group": "Ungrouped variables", "definition": "random(2..4)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["wA", "wK", "alpha", "beta", "theta", "Aopl", "Kopl", "c", "output", "kostengeg"], "variable_groups": [], "functions": {"toonfiguuromgekeerd": {"parameters": [], "type": "html", "language": "javascript", "definition": "var wa = Numbas.jme.unwrapValue(scope.variables.wa);\nvar wk = Numbas.jme.unwrapValue(scope.variables.wk);\nvar alpha = Numbas.jme.unwrapValue(scope.variables.alpha);\nvar beta = Numbas.jme.unwrapValue(scope.variables.beta);\nvar c = Numbas.jme.unwrapValue(scope.variables.c);\nvar aopl = Numbas.jme.unwrapValue(scope.variables.aopl);\nvar kopl = Numbas.jme.unwrapValue(scope.variables.kopl);\nvar kostengeg = Numbas.jme.unwrapValue(scope.variables.kostengeg);\nvar output = Numbas.jme.unwrapValue(scope.variables.output);\nvar div = Numbas.extensions.jsxgraph.makeBoard('400px','400px',\n {boundingBox: [-10,1.5*kostengeg/wk,1.5*kostengeg/wa,-10],\n axis: false,\n showNavigation: false,\n grid: false\n });\nvar board = div.board;\nxaxis = board.create('axis', [[0, 0], [1,0]], \n\t {name:'A', \n\t\t\twithLabel: true, \n\t\t\tlabel: {position: 'rt', // possible values are 'lft', 'rt', 'top', 'bot'\n\t\t\t\t\t offset: [0, -10] // (in pixels)\n\t\t\t\t\t }\n\t\t\t});\n yaxis = board.create('axis', [[0, 0], [0, 1]], \n\t\t {name:'K', \n\t\t\twithLabel: true, \n\t\t\tlabel: {\n\t\t\t position: 'rt', // possible values are 'lft', 'rt', 'top', 'bot'\n\t\t\t offset: [-20, 0] // (in pixels)\n\t\t\t\t}\n\t\t\t});\nxaxis.removeAllTicks();\t\nyaxis.removeAllTicks();\nvar grafiek = board.create('functiongraph',\n [function(x){return Math.pow(output/c,1/beta)*Math.pow(x,-alpha/beta)},0,3.5*aopl],\n{strokeColor:\"green\",setLabelText:'niveau',visible: true, strokeWidth: 4, highlightStrokeColor: 'green'} \n ); \nvar grafiek2 = board.create('functiongraph',\n [function(x){ return -wa/wk*x+kostengeg/wk},0,kostengeg/wa],\n{strokeColor:\"red\",setLabelText:'productie',visible: true, strokeWidth: 4, highlightStrokeColor: 'red'} \n ); \nvar grafiek3 = board.create('functiongraph',\n [function(x){ return Math.pow(1/4*output/c,1/beta)*Math.pow(x,-alpha/beta)},0,3.5*aopl],\n{strokeColor:\"green\",setLabelText:'niveau',visible: true, dash:2, highlightStrokeColor: 'green'} \n ); \nvar grafiek4 = board.create('functiongraph',\n [function(x){ return Math.pow(7/4*output/c,1/beta)*Math.pow(x,-alpha/beta)},0,3.5*aopl],\n{strokeColor:\"black\",setLabelText:'niveau',visible: true, dash:2, highlightStrokeColor: 'black'} \n ); \nvar punt = board.create('point', [aopl, kopl],{name:''});\nreturn div;"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Bepaal de optimale waarde van de inputfactor arbeid:

", "minValue": "Aopl", "maxValue": "Aopl", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Bepaal de optimale waarde van de inputfactor kapitaal:

", "minValue": "Kopl", "maxValue": "Kopl", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Paul Verheyen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3610/"}], "resources": []}]}], "contributors": [{"name": "Paul Verheyen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3610/"}]}