// Numbas version: finer_feedback_settings {"name": "Indefinite integral by substitution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "name": "Indefinite integral by substitution", "tags": ["Calculus", "Steps", "calculus", "indefinite integration", "integrals", "integration", "integration by substitution", "steps", "substitution"], "advice": "\n \n \n

This exercise is best solved by using substitution.
Note that if we let $u=\\simplify[std]{{a} * (x ^ 2) + {b}}$ then $du=\\simplify[std]{({2*a} * x)*dx }$
Hence we can replace $xdx$ by $\\frac{1}{\\var{2*a}}du$.

\n \n \n \n

Hence the integral becomes:

\n \n \n \n

\\[\\begin{eqnarray*} I&=&\\simplify[std]{Int((1/{2*a})u^{m},u)}\\\\\n \n &=&\\simplify[std]{(1/{2*a})u^{m+1}/{m+1}+C}\\\\\n \n &=& \\simplify[std]{({a} * (x ^ 2) + {b})^{m+1}/{2*a*(m+1)}+C}\n \n \\end{eqnarray*}\\]

\n \n \n \n

A Useful Result
This example can be generalised.
Suppose \\[I = \\int\\; f'(x)g(f(x))\\;dx\\]
The using the substitution $u=f(x)$ we find that $du=f'(x)\\;dx$ and so using the same method as above:
\\[I = \\int g(u)\\;du \\]
And if we can find this simpler integral in terms of $u$ we can replace $u$ by $f(x)$ and get the result in terms of $x$.

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepspenalty": 1.0, "prompt": "\n

\\[I=\\simplify[std]{Int( x*({a} * x ^ 2 + {b})^{m},x)}\\]

\n

$I=\\;$[[0]]

\n

Input numbers in your answer as integers or fractions and not as decimals.

\n

Click on Show steps to get further help. You will lose 1 mark if you do so.

\n ", "gaps": [{"notallowed": {"message": "

Input all numbers as integers or fractions and not as decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "({a} * (x ^ 2) + {b})^{m+1}/{2*a*(m+1)}+C", "type": "jme"}], "steps": [{"prompt": "

Try the substitution $u=\\simplify[std]{{a} * (x ^ 2) + {b}}$

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "extensions": [], "statement": "\n

Find the following integral.

\n

Input the constant of integration as $C$.

\n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(1..5)", "name": "a"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "m": {"definition": "random(4..9)", "name": "m"}}, "metadata": {"notes": "\n \t\t

2/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Added information about Show steps in prompt content area. 

\n \t\t

Added decimal point as forbidden string and included message in prompt about not entering decimals.

\n \t\t

Got rid of a redundant ruleset.

\n \t\t

 

\n \t\t

 

\n \t\t", "description": "

Find $\\displaystyle \\int x(a x ^ 2 + b)^{m}\\;dx$

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}