// Numbas version: finer_feedback_settings {"name": "Musa's copy of algebraic fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Musa's copy of algebraic fractions", "tags": [], "metadata": {"description": "
A question to practice simplifying fractions with the use of factorisation (for binomial and quadratic expressions).
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Simplify the following algebraic expressions.
\nNote: Although the question may accept coefficients in their decimal forms, it would be more appropriate to keep them in their most simplified fraction forms.
", "advice": "Click 'Try another question like this one' if you need more practice.
", "rulesets": {}, "extensions": [], "variables": {"e2": {"name": "e2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything"}, "co2": {"name": "co2", "group": "Ungrouped variables", "definition": "random(2..5 except co1)", "description": "", "templateType": "anything"}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "random(1..9 except n1)", "description": "", "templateType": "anything"}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}, "e1": {"name": "e1", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything"}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}, "g2": {"name": "g2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0 except g1)", "description": "", "templateType": "anything"}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(1..9 except b1)", "description": "", "templateType": "anything"}, "co4": {"name": "co4", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}, "n1": {"name": "n1", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}, "b4": {"name": "b4", "group": "Ungrouped variables", "definition": "random(1..9 except b3)", "description": "", "templateType": "anything"}, "co3": {"name": "co3", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything"}, "f2": {"name": "f2", "group": "Ungrouped variables", "definition": "random(-5..5 except f1)", "description": "", "templateType": "anything"}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(1..9 except a1)", "description": "", "templateType": "anything"}, "p2": {"name": "p2", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "templateType": "anything"}, "g1": {"name": "g1", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything"}, "b3": {"name": "b3", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}, "n2": {"name": "n2", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}, "ans": {"name": "ans", "group": "Ungrouped variables", "definition": "n1/d1", "description": "", "templateType": "anything"}, "p3": {"name": "p3", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "templateType": "anything"}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything"}, "co1": {"name": "co1", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}, "e3": {"name": "e3", "group": "Ungrouped variables", "definition": "random(-5..5 except 0 except e2)", "description": "", "templateType": "anything"}, "f1": {"name": "f1", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n1", "d1", "ans", "a1", "a2", "n2", "p2", "b1", "b2", "b3", "b4", "c1", "c2", "e1", "e2", "e3", "co1", "co2", "f1", "f2", "co3", "co4", "p3", "g1", "g2"], "variable_groups": [], "functions": {"": {"parameters": [], "type": "number", "language": "jme", "definition": ""}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "$\\simplify{({n1}{a1}x^2+{n1}{a2}x)/({d1}{a1}x+{d1}{a2})}$
\n", "stepsPenalty": "0", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "${\\simplify{({n1}{a1}x^2+{n1}{a2}x)/({d1}{a1}x+{d1}{a2})}}$
\nFactorise the numerator and denominator so that the binomials in both are the same.
\n${\\big(\\frac{\\var{n1}x}{\\var{d1}}\\big)\\big(\\frac{\\var{a1}x+\\var{a2}}{\\var{a1}x+\\var{a2}}\\big)}$
\nThe binomials cancel, leaving $x$ and its coefficient:
\n$\\big({\\simplify{{n1}/{d1}}}\\big)x$
"}], "answer": "{{n1}/{d1}}*x", "answerSimplification": "!basic", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "maxlength": {"length": "0", "partialCredit": 0, "message": ""}, "notallowed": {"strings": ["^", "x*x"], "showStrings": false, "partialCredit": 0, "message": "Please simplify further.
"}, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "$\\simplify{(({n2}{b1}n^({p2}+1)+{n2}{b2}n^{p2})/({n2}{b3}n^({p2}+1)+{n2}{b4}n^{p2}))}$
", "stepsPenalty": "0", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "${\\simplify{(({n2}{b1}n^({p2}+1)+{n2}{b2}n^{p2})/({n2}{b3}n^({p2}+1)+{n2}{b4}n^{p2}))}}$
\nAs before, factorise the numerator and denominator. This time, however, you'll notice that the factors themselves are the same.
\n$\\big(\\frac{\\var{n2}n}{{\\var{n2}}n}\\big)\\big(\\frac{\\var{b1}n+\\var{b2}}{\\var{b3}n+\\var{b4}}\\big)$
\nThe factors cancel, leaving:
\n$\\big(\\frac{\\var{b1}n+\\var{b2}}{\\var{b3}n+\\var{b4}}\\big)$
"}], "answer": "({b1}n+{b2})/({b3}n+{b4})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "notallowed": {"strings": ["^", "n*n"], "showStrings": false, "partialCredit": 0, "message": ""}, "valuegenerators": [{"name": "n", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "$\\simplify{(x^2+({c1}+{c2})x +{c1}{c2})/(x+{c1})}$
", "stepsPenalty": "0", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "${\\simplify{(x^2+({c1}+{c2})x +{c1}{c2})/(x+{c1})}}$
\nHere, the quadratic expression in the numerator needs to be factorised into the product of two binomials.
\n$\\frac{({\\simplify{x+{c1}}})({\\simplify{x+{c2}}})}{({\\simplify{x+{c1}}})}$
\nYou will notice that one of the binomials in the numerator is the same as the denominator, which means that they can be cancelled. This leaves the expression:
\n${\\simplify{x+{c2}}}$
"}], "answer": "x+{c2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "notallowed": {"strings": ["^", "^2"], "showStrings": false, "partialCredit": 0, "message": ""}, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "$\\frac{\\simplify{(n^2+({e1}+{e2})n+{e1}{e2})}}{\\simplify{(n^2+({e1}+{e3})n+{e1}{e3})}}$
", "stepsPenalty": "0", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "$\\frac{{\\simplify{(n^2+({e1}+{e2})n+{e1}{e2})}}}{{\\simplify{(n^2+({e1}+{e3})n+{e1}{e3})}}}$
\nThis time there is a quadratic expression which needs to be factorised into the products of binomials in both the numerator and denominator.
\n$\\frac{({\\simplify{n+{e1}}})({\\simplify{n+{e2}}})}{({\\simplify{n+{e1}}})({\\simplify{n+{e3}}})}$
\nThe repeated binomials in the numerator and denominator cancel, leaving:
\n$\\frac{({\\simplify{n+{e2}}})}{({\\simplify{n+{e3}}})}$
"}], "answer": "(n+{e2})/(n+{e3})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "notallowed": {"strings": ["^2", "^"], "showStrings": false, "partialCredit": 0, "message": ""}, "valuegenerators": [{"name": "n", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "$\\simplify{({co1}x+{co1}{f1})/(x+{f2})}\\times \\simplify{({co2}x+{co2}{f2})/(x+{f1})}$
", "stepsPenalty": "0", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "${\\simplify{({co1}x+{co1}{f1})/(x+{f2})}}\\times{\\simplify{({co2}x+{co2}{f2})/(x+{f1})}}$
\nFor this question, start by factorising each fraction being multiplied.
\n$\\big(\\var{co1}\\big)\\big(\\frac{\\simplify{x+{f1}}}{\\simplify{x+{f2}}}\\big)\\times\\big(\\var{co2}\\big)\\big(\\frac{\\simplify{x+{f2}}}{\\simplify{x+{f1}}}\\big)$
\nDue to the commmutative nature of multiplication, the factors can be rearranged so that potential simplification becomes easier to spot.
\n$\\big(\\var{co1}\\times\\var{co2}\\big)\\Big(\\frac{(\\simplify{x+{f1}})(\\simplify{x+{f2}})}{(\\simplify{x+{f2}})(\\simplify{x+{f1}})}\\Big)$
\nThe binomial expressions in the fraction all cancel, leaving the answer as the product of the factorised coefficients:
\n$\\var{co1}\\times\\var{co2}=\\simplify{{co1}*{co2}}$
"}], "answer": "{co1}*{co2}", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "notallowed": {"strings": ["x"], "showStrings": false, "partialCredit": 0, "message": ""}, "valuegenerators": []}], "type": "question", "contributors": [{"name": "Luke Park", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/826/"}, {"name": "Anna Strzelecka", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2945/"}, {"name": "heike hoffmann", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2960/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}]}]}], "contributors": [{"name": "Luke Park", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/826/"}, {"name": "Anna Strzelecka", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2945/"}, {"name": "heike hoffmann", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2960/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}]}